【題目】在平面直角坐標(biāo)系xOy中,點A是x軸外的一點,若平面內(nèi)的點B滿足:線段AB的長度與點A到x軸的距離相等,則稱點B是點A的“等距點”.
(1)若點A的坐標(biāo)為(0,2),點(2,2),(1,),(,1)中,點A的“等距點”是_______________;
(2)若點M(1,2)和點N(1,8)是點A的兩個“等距點”,求點A的坐標(biāo);
(3)記函數(shù)()的圖象為,的半徑為2,圓心坐標(biāo)為.若在上存在點M,上存在點N,滿足點N是點M的“等距點”,直接寫出t的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N
(1)如圖①,若∠BAC=110°,則∠MAN= °,若△AMN的周長為9,則BC=
(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2;
(3)如圖③,∠ABC的平分線BP和AC邊的垂直平分線相交于點P,過點P作PH垂直BA的延長線于點H.若AB=5,CB=12,求AH的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點沿邊從點向點以的速度移動;同時,點從點沿邊向點以的速度移動,設(shè)點、移動的時間為.問:
當(dāng)為何值時的面積等于?
當(dāng)為何值時是直角三角形?
是否存在的值,使的面積最小,若存在,求此時的值及此時的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小董設(shè)計的“作已知圓的內(nèi)接正三角形”的尺規(guī)作圖過程.
已知:⊙O.
求作:⊙O的內(nèi)接正三角形.
作法:如圖,
①作直徑AB;
②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點;
③連接AC,AD,CD.
所以△ACD就是所求的三角形.
根據(jù)小董設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:在⊙O中,連接OC,OD,BC,BD,
∵OC=OB=BC,
∴△OBC為等邊三角形(_______________)(填推理的依據(jù)).
∴∠BOC=60°.
∴∠AOC=180°-∠BOC=120°.
同理∠AOD=120°,
∴∠COD=∠AOC=∠AOD=120°.
∴AC=CD=AD(_______________)(填推理的依據(jù)).
∴△ACD是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b-<0時x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)你站在博物館的展覽廳中時,你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點P距地面2.5米,最低點Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時,站在此處觀賞最理想,則此時E到墻壁的距離為( )米.
A. 1 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的函數(shù)y=(a+2)x2﹣(2a﹣1)x+a﹣2的圖象與坐標(biāo)軸有兩個交點,則a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
(1)作出關(guān)于軸對稱的,并寫出三個頂點的坐標(biāo);
(2)請計算的面積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com