【題目】一組數(shù)據(jù)1,6,34,5的極差是_______

【答案】5

【解析】分析:根據(jù)極差是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差可得答案

詳解:數(shù)據(jù)中最大的值6,最小值1,故極差=6-1=5,故答案為:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:ab﹣a2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一根可伸縮的魚(yú)竿,魚(yú)竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚(yú)竿可收縮,完全收縮后,魚(yú)竿長(zhǎng)度即為第1節(jié)套管的長(zhǎng)度(如圖1所示):使用時(shí),可將魚(yú)竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚(yú)竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長(zhǎng)50cm,第2節(jié)套管長(zhǎng)46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長(zhǎng)度的重疊,設(shè)其長(zhǎng)度為xcm.

(1)請(qǐng)直接寫(xiě)出第5節(jié)套管的長(zhǎng)度;

(2)當(dāng)這根魚(yú)竿完全拉伸時(shí),其長(zhǎng)度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需490元,購(gòu)買2個(gè)足球和5個(gè)籃球共需730元.

(1)求購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)該中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購(gòu)買足球和籃球共80個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)7810元.這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,解答下列問(wèn)題:3+32+33+34+…+32017的末位數(shù)字是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB是O的直徑,AM、BN是O的兩條切線,D、C分別在AM、BN上,DC切O于點(diǎn)E,連接OD、OC、BE、AE,BE與OC相交于點(diǎn)P,AE與OD相交于點(diǎn)Q,已知AD=4,BC=9以下結(jié)論:

①⊙O的半徑為 ODBE PB= tanCEP=

其中正確的結(jié)論有( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,2),B(-1,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;

(2)平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(-5,-2),畫(huà)出平移后的△A2B2C2;

(3)若將△A2B2C2繞某一點(diǎn)旋轉(zhuǎn)可以得到△A1B1C,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).

(1)求二次函數(shù)的表達(dá)式;

(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過(guò)N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

(3)在(2)的條件下,是否存在點(diǎn)N,使得BM與NC相互垂直平分?若存在,求出所有滿足條件的N點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在計(jì)算41-N時(shí),誤將“-”看成“+”,結(jié)果得13,

(1)求N的值;

(2)求41-N的值到底是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案