【題目】已知:如圖,ABC中,AB=AC,D,E分別是邊BC,AC上的點.且BD=ECADE=∠B

1)求證:AD=DE

2)若ADE=40°,求ADB的度數(shù).

【答案】1)詳見解析;(2)∠ADB=110°.

【解析】

1)利用AAS證明ABDDCE即可;

(2)因為AD=DE,所以△ADE是等腰三角形,所以∠AED=,所以∠DEC=,

所以∠ADB=

1)證明:∵∠B+BAD=ADC,∠ADE=B

∴∠BAD=EDC

又∵AB=AC

∴∠B=C

ABDDCE

ABDDCE

AD=DE

2)∵AD=DE

∴△ADE是等腰三角形

∵∠ADE=

∴∠AED=

又∵ABDDCE

所以∠ADB=DEC=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限A、B兩點,過點A作AD⊥x軸于D,AD=4,sin∠AOD=,且點B的坐標(biāo)為(n,-2).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)E是y軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋中裝有標(biāo)著數(shù)字2,34,54個小球,這4個小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機(jī)摸出兩個小球,這兩個小球上的數(shù)字之積大于9的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一文具廠接到生產(chǎn)一批橡皮和水筆的任務(wù),已知該文具廠銷售200個橡皮和200個水筆的利潤為160元,銷售100個橡皮和200個水筆的利潤為130元.已知該文具廠每天生產(chǎn)橡皮和水筆共4500個,生產(chǎn)橡皮和水筆每個成本分別為2元,3元,設(shè)每天生產(chǎn)橡皮個,該文具廠每天生產(chǎn)成本為元.

1)求橡皮和水筆的銷售單價;

2)求關(guān)于的函數(shù)關(guān)系式;

3)若該文具廠每天最多投入成本為10000元,求該文具廠每天獲得利潤最多是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年全民抗疫期間,抗疫志士莫小貝購進(jìn)一條生產(chǎn)線生產(chǎn)抗疫物質(zhì). 已知該生產(chǎn)線的三個操作平臺分別排列在同一直線上,順次是甲、乙、丙,其中甲乙平臺之間的距離為40米,乙丙平臺之間的距離為60米,操作甲、乙、丙平臺分別需要20人、70人、60. 由于時間倉促無法做到完全自動化,需要在三個平臺之間建立一個原材料供給站讓工人自取,有如下兩個方案:方案一:讓所有工人到供給站的距離總和最;方案二:讓甲、丙平臺所有工人到供給站的距離之和等于乙平臺所有工人到供給站的距離之和.

(1)若按照方案一建站,供給站距離甲平臺多少米?

(2)若按照方案二建站,供給站距離甲平臺多少米?

(3)(2)的條件下,若甲平臺的工人數(shù)增加(),那么隨著的增大,供給站將距離甲平臺將越來越遠(yuǎn),還是越來越近?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△AOB放在平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點B在第一象限,將等邊△AOB繞點O順時針旋轉(zhuǎn)180°得到△AOB′,則點B的對應(yīng)點B′的坐標(biāo)是( 。

A.B.C.D.0,﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知C過菱形ABCD的三個頂點BA,D,連結(jié)BD,過點AAEBD交射線CB于點E

1)求證:AEC的切線.

2)若半徑為2,求圖中線段AE、線段BE圍成的部分的面積.

3)在(2)的條件下,在C上取點F,連結(jié)AF,使∠DAF15°,求點F到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,∠BAC的平分線AD交⊙O于點D,過點DDEACAC的延長線于點E

1)求證:DE是⊙O的切線;

2)如果∠BAC=60°,AE=,求AC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸分別交于點,,與軸交于點

1)求拋物線的解析式;

2)設(shè)點在第一象限的拋物線上,連接,.試問,在對稱軸左側(cè)的拋物線是否存在一點,滿足?如果存在,請求出點的坐標(biāo):如果不存在,請明理由;

3)存在正實數(shù),),當(dāng)時,恰好滿足,求,的值

查看答案和解析>>

同步練習(xí)冊答案