如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.

求證:△ADF∽△DEC;
若AB=4,AD=3,AE=3,求ED,AF的長.

證明見解析  ,

解析試題分析:因?yàn)樗倪呅蜛BCD是平行四邊形,
所以,
所以,
因?yàn)椤螦FE=∠B,所以
,所以
所以△ADF∽△DEC
因?yàn)锳E⊥BC,所以在直角三角形AED中,

由△ADF∽△DEC得,
所以
考點(diǎn):本題考查相似三角形的判定及性質(zhì)。
點(diǎn)評:要想解答此題,首先要明確三角形相似的判定定理,本題采用兩角相等得證;同時需要掌握三角形相似的性質(zhì)定理,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(當(dāng)點(diǎn)F運(yùn)動到點(diǎn)B時,點(diǎn)E隨之停止運(yùn)動),EM、CD精英家教網(wǎng)的延長線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案