【題目】如圖,動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),2秒后,兩點(diǎn)相距16個(gè)單位長(zhǎng)度,已知?jiǎng)狱c(diǎn)A、B的速度比為1:3(速度單位:1個(gè)單位長(zhǎng)度秒).
(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;
(2)在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)2秒時(shí)的位置;
(3)若表示數(shù)0的點(diǎn)記為O,A、B兩點(diǎn)分別從(2)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),再經(jīng)過多長(zhǎng)時(shí)間,滿足OB=2OA?
【答案】(1)A的速度為2 ,B的速度為6;(2)畫數(shù)軸見解析;(3)t=0.4,t=10.
【解析】
試題(1)設(shè)動(dòng)點(diǎn)A的速度是x單位長(zhǎng)度/秒,那么動(dòng)點(diǎn)B的速度是3x單位長(zhǎng)度/秒,然后根據(jù)2秒后,兩點(diǎn)相距16個(gè)單位長(zhǎng)度即可列出方程解決問題;
(2)根據(jù)(1)的結(jié)果和已知條件即可得出.
(3)此問分兩種情況討論:設(shè)經(jīng)過時(shí)間為x后,B在A的右邊,若A在B的右邊,列出等式解出x即可;
解:(1)設(shè)動(dòng)點(diǎn)A的速度是x單位長(zhǎng)度/秒,
根據(jù)題意得2(x+3x)=16
∴8x=16,
解得:x=2,
則3x=6.
答:動(dòng)點(diǎn)A的速度是2單位長(zhǎng)度/秒,動(dòng)點(diǎn)B的速度是6單位長(zhǎng)度/秒;
(2)標(biāo)出A,B點(diǎn)如圖,
;
(3)設(shè)x秒時(shí),OB=2OA,
當(dāng)B在A的右邊,
根據(jù)題意得:12﹣6x=2(4+2x),
∴x=0.4,
當(dāng)A在B的右邊,
根據(jù)題意得:6x﹣12=2(4+2x),
∴x=10
∴0.4,10秒時(shí)OB=2OA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)把代數(shù)式通過配湊等手段,得到完全平方式,再運(yùn)用完全平方式是非負(fù)性這一性質(zhì)增加問題的條件,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問題等都有著廣泛的應(yīng)用.
例如:①用配方法因式分解:a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當(dāng)a=b=1時(shí),M有最小值1
請(qǐng)根據(jù)上述材料解決下列問題:
(1)在橫線上添上一個(gè)常數(shù)項(xiàng)使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥y軸,垂足為B,將△ABO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB1O1的位置,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B1落在直線y=﹣ x上,再將△AB1O1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)到△A1B1O1的位置,使點(diǎn)O1的對(duì)應(yīng)點(diǎn)O2落在直線y=﹣ x上,依次進(jìn)行下去…若點(diǎn)B的坐標(biāo)是(0,1),則點(diǎn)O12的縱坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列數(shù)組作為三角形的三條邊長(zhǎng),其中能構(gòu)成直角三角形的是( )
A. 1, ,3 B. , ,5 C. 1.5,2,2.5 D. , ,
【答案】C
【解析】A、12+()2≠32,不能構(gòu)成直角三角形,故選項(xiàng)錯(cuò)誤;
B、(2+()2≠52,不能構(gòu)成直角三角形,故選項(xiàng)錯(cuò)誤;
C、1.52+22=2.52,能構(gòu)成直角三角形,故選項(xiàng)正確;
D、())2+()2≠()2,不能構(gòu)成直角三角形,故選項(xiàng)錯(cuò)誤.
故選:C.
【題型】單選題
【結(jié)束】
3
【題目】在Rt△ABC中,∠C=90°,AC=9,BC=12,則點(diǎn)C到斜邊AB的距離是( )
(A) (B) (C)9 (D)6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形 ABCD中,O為 AC 的中點(diǎn),過點(diǎn)O的直線分別與AB,CD交于點(diǎn)E,F(xiàn),連接 BF交AC于點(diǎn)M連接DE,BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四邊形 EBFD 是菱形;⑤MB:OE=3:2其中正確結(jié)論的個(gè)數(shù)是( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在探索“尺規(guī)三等分角”這個(gè)數(shù)學(xué)名題的過程中,曾利用了如圖,該圖中,四邊形ABCD是矩形,E是BA延長(zhǎng)線上一點(diǎn),F(xiàn)是CE上一點(diǎn),∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,則∠ECD的度數(shù)是( )
A.7°
B.21°
C.23°
D.24°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線CD⊥AB于點(diǎn)O,∠EOF=90°,射線OP平分∠COF.
(1)如圖1,∠EOF在直線CD的右側(cè):
①若∠COE=30°,求∠BOF和∠POE的度數(shù);
②請(qǐng)判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說明理由.
(2)如圖2,∠EOF在直線CD的左側(cè),且點(diǎn)E在點(diǎn)F的下方:
①請(qǐng)直接寫出∠POE與∠BOP之間的數(shù)量關(guān)系;
②請(qǐng)直接寫出∠POE與∠DOP之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點(diǎn),l4和l1,l2分別交于C,D兩點(diǎn),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點(diǎn)P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關(guān)系,并說明理由;
(3)應(yīng)用(2)中的結(jié)論解答下列問題;
如圖②,點(diǎn)A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);
(4)如果點(diǎn)P在直線l3上且在A,B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,試探究∠1,∠2,∠3之間的關(guān)系(點(diǎn)P和A,B兩點(diǎn)不重合),直接寫出結(jié)論即可.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com