已知:如圖,在四邊形ABFC中,=90°,的垂直平分線EF交BC于點D,交AB于點E,且CF=AE.

(1)求證:四邊形BECF是菱形;

(2)當的大小為多少度時,四邊形BECF是正方形?

 

 

 

解:⑴∵ EF垂直平分BC,

∴CF=BF,BE=CE ,∠BDE=90° …………………………1’

又∵ ∠ACB=90°

∴EF∥AC

∴E為AB中點,   即BE=AE………………………………2’

∵CF=AE          ∴CF=BE

∴CF=FB=BE=CE  …………………………………………3’ 

∴四邊形是BECF菱形.  …………………………………4’

⑵當∠A=45°時,四邊形是BECF是正方形. …………5’

解析:略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點E在BC上,點F在AD上,AF=CE,EF與對角線BD相交于點O.求證:O是BD的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請設(shè)計兩種不同的分法,將四邊形ABCD分割成四個三角形,使得分割成的每個三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標出能夠說明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點E、F分別是邊AB、CD的中點,AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當BE⊥AD于E時,試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習冊答案