【題目】如圖,甲樓AB高20 m,乙樓CD高10 m,兩棟樓之間的水平距離BD=20 m,小麗在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求電視塔的高度EF.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.4,結(jié)果保留整數(shù))
【答案】電視塔的高度為110米.
【解析】分析:首先分析題意,根據(jù)題意構(gòu)造直角三角形,分別過點(diǎn)A,C作AM⊥EF,CN⊥EF垂足分別為M、N,在Rt△ECN和Rt△AEM中,借助三角函數(shù)解出AM、 CN的值,進(jìn)而求出電視塔的高度.
詳解:如圖,分別過點(diǎn)A,C作AM⊥EF,CN⊥EF垂足分別為M、N.
∴MF=AB=20,NF=CD=10.
設(shè)EF=x m,則EN=(x―10) m,EM=(x―20) m.
在Rt△ECN中,∠ECN=45°,
∵tan45°=,
∴CN==.
在Rt△AEM中,∠EAM=37°,
∵ tan37°=,
∴AM==.
又 AM―CN=BD,
∴―=20.
∴x≈110.
答:電視塔的高度為110米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,已知△ ABC 中,點(diǎn) D 、E 是 BC 邊上兩點(diǎn),且 ADAE ,BAECAD 90 ,
(1)試說明△ABE 與△ACD 全等的理由;
(2)如果 ADBD ,試判斷△ADE 的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是原點(diǎn),四邊形是菱形,點(diǎn)的坐標(biāo)為,點(diǎn)在軸的負(fù)半軸上,直線與軸交于點(diǎn),與軸交于點(diǎn)。
(1)求直線的解析式;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線方向以1個(gè)單位/秒的速度向終點(diǎn)勻速運(yùn)動(dòng),設(shè)的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,求與之間的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角板的直角頂點(diǎn)放在點(diǎn)O處(∠DOE=90°).
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),若OD恰好平分∠BOC,求∠AOE的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,∠A=60°,點(diǎn)E、F分別在邊AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,則EF的長度為( 。
A. B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠C=90°,以AB為直徑的⊙O交AD于點(diǎn)E,CD=ED,連接BD交⊙O于點(diǎn)F.
(1)求證:BC與⊙O相切;
(2)若BD=10,AB=13,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在上學(xué)的路上要經(jīng)過多個(gè)路口,每個(gè)路口都設(shè)有紅、黃、綠三種信號燈,假設(shè)在各路口遇到信號燈是相互獨(dú)立的.
(1).如果有2個(gè)路口,求小明在上學(xué)路上到第二個(gè)路口時(shí)第一次遇到紅燈的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2).如果有n個(gè)路口,則小明在每個(gè)路口都沒有遇到紅燈的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將邊長為 a 、b 的正方形 ABCD 按圖 ① 中的比例進(jìn)行分割,可以拼成一個(gè)長方形A1 B1C1D1 不重疊、無縫隙),如圖②所示.
(1)根據(jù)圖①可以拼成圖②的面積關(guān)系,請寫出 a 、b 之間存在的關(guān)系式;
(2)已知圖③中,四邊形 QMNG 與四邊形EFGH 分別是以 a 、b 長為邊的正方形與圖①中的 a 、b 相同),在圖 3 已有的四邊形中,面積相等的四邊形有幾組?請分別寫出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上出了一道解方程的題:,小明馬上舉起了手,要求到黑板上去做,他是這樣做的:4(2x﹣1)=1﹣3(x+2),①
8x﹣4=1﹣3x﹣6,②
8x+3x=1﹣6+4,③
11x=﹣1,④
x=﹣.⑤
老師說:小明解一元一次方程的一般步驟都掌握了,但解題時(shí)有一步做錯(cuò)了.請你指出他錯(cuò)在第 步(填編號),然后再細(xì)心地解下面的方程,相信你一定能做對.
(1)5(x+8)=6(2x﹣7)+5;
(2) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com