【題目】如圖,點(diǎn)O為正方形ABCD的中心,AD=1,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使BD=BF,連結(jié)DF交BE的延長(zhǎng)線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HEHB.正確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4
【答案】D
【解析】
①過(guò)點(diǎn)E作EP⊥BD于點(diǎn)P,求出EC=CF,證明△BCE≌△DCF,然后可得BH⊥DF,再根據(jù)等腰三角形三線合一與中位線定理可得出結(jié)論;
②③由三角形中位線定理知,OG=BC=,GH=CF=,然后可得結(jié)論;
④根據(jù)四邊形ABCD是正方形,BE是∠DBC的平分線可求出∠EBC=22.5°,進(jìn)而得到∠F=67.5°,再由H是DF中點(diǎn),可得CH=HF,求出∠CHF即可得出結(jié)論;
⑤證明△HEC∽△HCB,則HC:HB=HE:HC,即CH2=HEHB,即可得到⑤正確.
解:①過(guò)點(diǎn)E作EP⊥BD于點(diǎn)P,則EP=EC,
∵∠BDC=45°,
∴PD=EP,
易證△BEP≌△BEC,
∴BP=BC,
∵BD=BF,
∴PD=CF,
∴EC=CF,
∵∠BCE=∠DCF,BC=DC,
∴△BCE≌△DCF(SAS),
∴∠CBE=∠CDF,
∵∠CBE+∠BEC=90°,∠BEC=∠DEH,
∴∠DEH+∠CDF=90°,
∴∠BHD=∠BHF=90°,即BH⊥DF,
∴DH=HF,
∵OD=OB,
∴OH是△DBF的中位線,
∴OH∥BF,故①正確;
②③∵點(diǎn)O為正方形ABCD的中心,AD=1,BD=BF,
∴BD=BF=,
由三角形中位線定理知,OG=BC=,GH=CF=,
∴OG:GH=1:(﹣1),
故②錯(cuò)誤,③正確;
④∵四邊形ABCD是正方形,BE是∠DBC的平分線,
∴∠EBC=22.5°,
∵∠BHF=90°,
∴∠F=90°﹣22.5°=67.5°,
∵H是DF中點(diǎn),
∴CH=HF,
∴∠CHF=180°﹣67.5°﹣67.5°=45°,
∴∠CHF=2∠EBC,故④正確;
⑤∵∠CHF=∠CDF+∠ECH=2∠EBC,∠EBC=∠CDF,
∴∠ECH=∠CBH,
∵∠CHE=CHB,
∴△HEC∽△HCB,
∴HC:HB=HE:HC,即CH2=HEHB,故⑤正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形斜邊長(zhǎng)為6,那么這個(gè)三角形的重心到斜邊中點(diǎn)的距離為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣3的圖象與x軸的兩個(gè)交點(diǎn)分別為A(1,0)、B(3,0),與y軸的交點(diǎn)為C.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)在x軸上方的二次函數(shù)圖象上,是否存在一點(diǎn)E使得以B、C、E為頂點(diǎn)的三角形的面積為?若存在,求出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于點(diǎn)H,連接OH,若∠DHO=20°,則∠ADC的度數(shù)是( )
A. 120°B. 130°C. 140°D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,3)、B(3、4)、C(2,2)(網(wǎng)格中每個(gè)正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度).
(1)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A′BC′,使△A′BC′與△ABC位似,且位似比為2:1,則點(diǎn)C′的坐標(biāo)是______;
(2)△A′BC′的面積是_______平方單位;
(3)在x軸上找出點(diǎn)P,使得點(diǎn)P到B與點(diǎn)A距離之和最小,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊AB上一點(diǎn),延長(zhǎng)AD至F使DF=BE,連接CF.
(1)求證:∠BCE=∠DCF;
(2)過(guò)點(diǎn)E作EG∥CF,過(guò)點(diǎn)F作FG∥CE,問(wèn)四邊形CEGF是什么特殊的四邊形,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) n 度(0<n<180)后得到△ADE,并使點(diǎn) D 落在 AC 的延長(zhǎng)線上.
(1)若∠B=17°,∠E=55°,求 n;
(2)若 F 為 BC 的中點(diǎn),G 為 DE 的中點(diǎn),連 AG、AF、FG,求證:△AFG 為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段CE,連結(jié)BE.
(1)求證:△ACD≌△BCE;
(2)當(dāng)∠1=25°時(shí),求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于點(diǎn)、點(diǎn),在軸上存在一點(diǎn),使的周長(zhǎng)最小,則點(diǎn)的坐標(biāo)是____________________________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com