【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2S3,若S1+S2+S3=10,則S2的值是_________

【答案】

【解析】試題解析:將四邊形MTKN的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,

正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=10

得出S1=8y+x,S2=4y+x,S3=x,

∴S1+S2+S3=3x+12y=10,故3x+12y=10,

x+4y=,

所以S2=x+4y=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON30°.公路PQA處距O點(diǎn)240米.如果火車行駛時(shí),周圍200米以內(nèi)會(huì)受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),A處受噪音影響的時(shí)間為( 。

A. 12 B. 16 C. 20 D. 30秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,1=2,BAC=70°,將求∠AGD的過程填寫完整;

解:∵EFAD

=3 (兩直線平行,同位角相等)

又∵∠1=2

∴∠1=3 (__________________)

DG (__________________________)

∴∠BAC+______=180°(_________________________)

∵∠BAC=70°

∴∠AGD=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,BAC90°,BEABC的角平分線,EDBC于點(diǎn)D,連接AD.

(1)請你寫出圖中所有的等腰三角形;

(2)BC10,求ABAE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明:如圖,已知AD⊥BCEF⊥BC,∠1=∠2.

求證: DG∥BA.

證明:∵AD⊥BC,EF⊥BC ( 已知 )

∴∠EFB=90°,∠ADB=90°(_______________________ )

∴∠EFB=∠ADB ( 等量代換 )

∴EF∥AD ( _________________________________ )

∴∠1=∠BAD (________________________________________)

∵∠1=∠2 ( 已知)

(等量代換)

∴DG∥BA. (__________________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與理解:

三角形中一邊中點(diǎn)與這邊所對頂點(diǎn)的線段稱為三角形的中線。

三角形的中線的性質(zhì):三角形的中線等分三角形的面積。

即如圖1,AD是中BC邊上的中線,則,

理由:,,

即:等底同高的三角形面積相等。

操作與探索:

在如圖2至圖4中,的面積為a。

(1)如圖2,延長的邊BC到點(diǎn)D,使CD=BC,連接DA,若的面積為,則(用含a的代數(shù)式表示);

(2)如圖3,延長的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE,若的面積為,則_________(用含a的代數(shù)式表示);

(3)在圖3的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到(如圖4),若陰影部分的面積為,則________(用含a的代數(shù)式表示)

(4)拓展與應(yīng)用:

如圖5,已知四邊形ABCD的面積是a;E,F,G,H分別是AB,BC,CD的中點(diǎn),求圖中陰影部分的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在六邊形ABCDEF中,∠A+∠B+∠E+∠Fα,CP、DP分別平分∠BCD、∠CDE,則∠P的度數(shù)是( 。

A. α180°B. 180°-C. D. 360°-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】題目:如圖,在△ABC中,點(diǎn)DBC邊上一點(diǎn),連結(jié)AD,若AB=10,AC=17,BD=6,AD=8,解答下列問題:

(1)求∠ADB的度數(shù);

(2)求BC的長.

小強(qiáng)做第(1)題的步驟如下:∵AB2BD2+AD2

∴△ABD是直角三角形,∠ADB=90°.

(1)小強(qiáng)解答第(1)題的過程是否完整,如果不完整,請寫出第(1)題完整的解答過程

(2)完成第(2)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】轉(zhuǎn)化是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

(1)請你根據(jù)已經(jīng)學(xué)過的知識(shí)求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對圖(1)中星形截去一個(gè)角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)

查看答案和解析>>

同步練習(xí)冊答案