【題目】如圖所示,ABC是等腰三角形,AB=AC,點D,E,F分別在ABBC,AC邊上,且BD=CEBE=CF

1)求證:DEF是等腰三角形;

2)猜想:當∠A滿足什么條件時,DEF是等邊三角形?并說明理由.

【答案】1)見解析;(2)見解析.

【解析】

1)首先根據(jù)條件證明DBE≌△ECF,根據(jù)全等三角形的性質(zhì)可得DE=FE,進而可得到DEF是等腰三角形;

2)∠A=60°時,DEF是等邊三角形,首先根據(jù)DBE≌△ECF,再證明∠DEF=60°,可以證出結(jié)論.

1)證明:∵AB=AC,

∴∠B=C,

DBEECF中,

,

∴△DBE≌△ECF,

DE=FE,

∴△DEF是等腰三角形;

2)當∠A=60°時,DEF是等邊三角形,

理由:∵△BDE≌△CEF,

∴∠FEC=BDE

∴∠DEF=180°-BED-EFC=180°-DEB-EDB=B

DEF是等邊三角形,只要∠DEF=60°

所以,當∠A=60°時,∠B=DEF=60°,

DEF是等邊三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘船以每小時海里的速度向西南方向航行,在處觀測燈塔在船的南偏西的方向,航行分鐘后到達處,這時燈塔恰好在船的正西方向.已知距離此燈塔海里以內(nèi)的海區(qū)有暗礁,這艘船繼續(xù)沿西南方向航行是否有觸礁的危險?為什么?(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于二次函數(shù)y2x2mx+m2,以下結(jié)論:①不論m取何值,拋物線總經(jīng)過點(1,0);②拋物線與x軸一定有兩個交點;③若m6,拋物線交x軸于A、B兩點,則AB1;④拋物線的頂點在y=﹣2x12圖象上.上述說法錯誤的序號是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形AOBC,以O為坐標原點,OB、OA分別在x軸、y軸上,點A的坐標為(0,8),點B的坐標為(10,0),點EBC邊上一點,把長方形AOBC沿AE翻折后,C點恰好落在x軸上點F處.

1)求點E、F的坐標;

2)求AF所在直線的函數(shù)關(guān)系式;

3)在x軸上求一點P,使PAF成為以AF為腰的等腰三角形,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,點C(1,2)、A(-2,0),則點B的坐標是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,ABCACB的平分線BD,CE相交于O點,且BDAC于點D,CEAB于點E.某同學分析圖形后得出以下結(jié)論:BCDCBE;BADBCD;BDACEA;BOECOD; ACEBCE;上述結(jié)論一定正確的是

A. ①②③ B. ②③④ C. ①③⑤ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B都分成3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示),游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),則甲獲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù),則乙獲勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.請問這個游戲?qū)、乙雙方公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCAEF中,AB=AE,BC=EF,B=E,ABEFD.給出下列結(jié)論:①AF=AC;DF=CF;③∠AFC=C;④∠BFD=CAF.

其中正確的結(jié)論個數(shù)有. ( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A1,0),與y軸的交點B在(02)和(0,1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc0 4a+2b+c0 4acb28a abc.其中含所有正確結(jié)論的選項是( 。

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

同步練習冊答案