【題目】函數(shù)y=(m為常數(shù))的圖象上有三點(﹣1,y1)、、,則函數(shù)值y1、y2、y3的大小關(guān)系是_____.(用“<”符號連接)
【答案】y2<y1<y3
【解析】
根據(jù)反比例函數(shù)的比例系數(shù)的符號可得反比例函數(shù)所在象限為一、三,其中在第三象限的點的縱坐標(biāo)總小于在第一象限的縱坐標(biāo),進而判斷在同一象限內(nèi)的點(﹣1,y1)和(,y2)的縱坐標(biāo)的大小即可.
解:∵反比例函數(shù)的比例系數(shù)為m2+1>0,
∴圖象的兩個分支在一、三象限;
∵第三象限的點的縱坐標(biāo)總小于在第一象限的縱坐標(biāo),點(﹣1,y1)和(,y2)在第三象限,點(,y3)在第一象限,
∴y3最小,
∵﹣1<,y隨x的增大而減小,
∴y1>y2,
∴y2<y1<y3.
故答案為y2<y1<y3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線經(jīng)過直線與坐標(biāo)軸的兩個交點.此拋物線與軸的另一個交點為.拋物線的頂點為.
求此拋物線的解析式;
若點為拋物線上一動點,是否存在點.使與的面積相等?若存在,求點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,以BC為邊向正方形內(nèi)部作等邊△BCE.連接AE.DE,連接BD交CE于F,下列結(jié)論:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面積:△BFC的面積(+1):2,其中正確的結(jié)論有( 。﹤.
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸交于點,與反比例函數(shù)在第二象限內(nèi)的圖象相交于點.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數(shù)的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設(shè)直線CD的解析式為,根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D為BC中點,點E在邊AB上,連接DE,過點D作DF⊥DE交AC于點F.連接EF.下列結(jié)論:①BE+CF=BC;②AD≥EF;③S四邊形AEDF=AD2;④S△AEF≤,其中正確的是_____(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b(k1、b為常數(shù),k1≠0)的圖象與反比例函數(shù)y2=(k2≠0)的圖象交于點A(m,1)與點B(﹣1,﹣4).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象說明,當(dāng)x為何值時,k1x+b﹣<0;
(3)若動點P是第一象限內(nèi)雙曲線上的點(不與點A重合),連接OP,過點P作y軸的平行線交直線AB于點C,連接OC,若△POC的面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽光照射下,在斜坡上的影長BC=6.5米,此時光線與水平線恰好成30°角,求大樹BD的高.(結(jié)果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、CE是高,連接DE.
(1)求證:BC=2DE;
(2)若∠BAC=50°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com