【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:
(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C= °,∠D= °
(2)在探究等對角四邊形性質(zhì)時(shí):
小紅畫了一個(gè)如圖2所示的等對角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立,請你證明該結(jié)論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以AB和BC為邊各畫一個(gè)等對角四邊形ABCD.
要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫的兩個(gè)四邊形不全等.
(4)已知:在等對角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對角線AC的長.
【答案】(1)140°,75°;(2)證明見解析;(3)見解析;(4)2或2.
【解析】
試題(1)根據(jù)四邊形ABCD是“等對角四邊形”得出∠D=∠B=75°,根據(jù)多邊形內(nèi)角和定理求出∠C即可;
(2)連接BD,根據(jù)等邊對等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根據(jù)等腰三角形的判定得出即可;
(3)根據(jù)等對角四邊形的定義畫出圖形即可求解;
(4)分兩種情況:①當(dāng)∠ADC=∠ABC=90°時(shí),延長AD,BC相交于點(diǎn)E,先用含30°角的直角三角形的性質(zhì)求出AE,得出DE,再用三角函數(shù)求出CD,由勾股定理求出AC;
②當(dāng)∠BCD=∠DAB=60°時(shí),過點(diǎn)D作DM⊥AB于點(diǎn)M,DN⊥BC于點(diǎn)N,則∠AMD=90°,四邊形BNDM是矩形,先求出AM、DM,再由矩形的性質(zhì)得出DN=BM=3,BN=DM=2,求出CN、BC,根據(jù)勾股定理求出AC即可.
試題解析:
(1)解:∵四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=75°,
∴∠D=∠B=75°,
∴∠C=360°﹣75°﹣75°﹣70°=140°;
(2)證明:如圖2,連接BD,
∵AB=AD,
∴∠ABD=∠ADB,
∵∠ABC=∠ADC,
∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
∴∠CBD=∠CDB,
∴CB=CD;
(3)如圖所示:
(4)解:分兩種情況:
①當(dāng)∠ADC=∠ABC=90°時(shí),延長AD,BC相交于點(diǎn)E,如圖3所示:
∵∠ABC=90°,∠DAB=60°,AB=5,
∴∠E=30°,
∴AE=2AB=10,
∴DE=AE﹣AD=10﹣4═6,
∵∠EDC=90°,∠E=30°,
∴CD=2,
∴AC=;
②當(dāng)∠BCD=∠DAB=60°時(shí),
過點(diǎn)D作DM⊥AB于點(diǎn)M,DN⊥BC于點(diǎn)N,如圖4所示:
則∠AMD=90°,四邊形BNDM是矩形,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=AD=2,
∴DM=2,
∴BM=AB﹣AM=5﹣2=3,
∵四邊形BNDM是矩形,
∴DN=BM=3,BN=DM=2,
∵∠BCD=60°,
∴CN=,
∴BC=CN+BN=3,
∴AC=.
綜上所述:AC的長為或.
故答案為:140,75.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+8與x軸,y軸分別交于點(diǎn)A,B,直線y=x+1與直線AB交于點(diǎn)C,與y軸交于點(diǎn)D.
(1)求點(diǎn)C的坐標(biāo).
(2)求△BDC的面積.
(3)如圖,P是y軸正半軸上的一點(diǎn),Q是直線AB上的一點(diǎn),連接PQ.
①若PQ∥x軸,且點(diǎn)A關(guān)于直線PQ的對稱點(diǎn)A′恰好落在直線CD上,求PQ的長.
②若△BDC與△BPQ全等(點(diǎn)Q不與點(diǎn)C重合),請寫出所有滿足要求的點(diǎn)Q坐標(biāo)(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)平臺遠(yuǎn)處有一座古塔,小明在平臺底部的點(diǎn)C處測得古塔頂部B的仰角為60°,在平臺上的點(diǎn)E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),,BD⊥AB,,點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng),它們運(yùn)動(dòng)的時(shí)間為.
(1)若點(diǎn)的速度與點(diǎn)的速度相等,當(dāng)時(shí),求證:;
(2)在(1)的條件下,判斷此時(shí)和的位置關(guān)系,并證明;
(3)將圖(1)中的“,”,改為“”,得到圖(2),其他條件不變.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,請問是否存在實(shí)數(shù),使得與全等?若存在,求出相應(yīng)的和的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時(shí)刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40km的B處;經(jīng)過1小時(shí)20分鐘,又測得該輪船位于A的北偏東60°,且與A相距km的C處.
(1)求該輪船航行的速度(保留精確結(jié)果);
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評估活動(dòng),以“我最喜愛的書籍”為主題,對學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請你估計(jì)最喜愛科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點(diǎn)M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點(diǎn)E,將△AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,且點(diǎn)P在射線CB上.
(1)如圖1,當(dāng)EP⊥BC時(shí),求CN的長;
(2) 如圖2,當(dāng)EP⊥AC時(shí),求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時(shí)MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點(diǎn)P,且∠D+∠C=200°,則∠P=( )
A. 10 ° B .20 ° C .30° D.40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com