【題目】如圖,在△ABC.AB=AC.∠BAC=36°.BD是∠ABC的平分線,AC于點D,EAB的中點,連接ED并延長,交BC的延長線于點F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.

【答案】(1)見解析;(2)見解析.

【解析】

(1)依據(jù)ABAC,∠BAC=36°,可得∠ABC=72°,再根據(jù)BD是∠ABC的平分線,即可得到∠ABD=36°,由∠BAD=∠ABD,可得ADBD依據(jù)EAB的中點,即可得到FEAB;

(2)依據(jù)FEAB,AEBE,可得FE垂直平分AB進而得出∠BAF=∠ABF,依據(jù)∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根據(jù)∠AFC=∠ACB﹣∠CAF=36°,可得∠CAF=∠AFC=36°,進而得到ACCF

1)∵ABAC,∠BAC=36°,∴∠ABC=∠ACB =72°.

又∵BD是∠ABC的平分線,∴∠ABD=∠FBD= 36°,∴∠BAD=∠ABD,∴ADBD

又∵EAB的中點,∴DEABFEAB;

(2)∵FEAB,AEBE,∴FE垂直平分AB,∴AFBF,∴∠BAF=∠ABF

又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°.

又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴ACCF即△ACF為等腰三角形

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC延長線上,連接AD,過B作BE⊥AD,垂足為E,交AC于點F,連接CE.

(1)求證:CF=CD;
(2)求證:DADE=DBDC;
(3)探究線段AE,BE,CE之間滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩種型號的風扇成本分別為120元臺、170元臺,銷售情況如下表所示(成本、售價均保持不變,利潤=收入-成本)

(1)求這兩種型號風扇的售價;

(2)該商場打算再采購這兩種型號的風扇共130臺,銷售完后總利潤能不能恰好為8010?若能,給出相應(yīng)的采購方案;若不能,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點其中滿足:

1

2)在坐標平面內(nèi),將△ABC平移,點A的對應(yīng)點為點D,點B的對應(yīng)點為點E,點C的對應(yīng)點為點F,若平移后E、F兩點都在坐標軸上,請直接寫出點E的坐標;

3)若在△ABC內(nèi)部的軸上存在一點P,在(2)的平移下,點P的對應(yīng)點為點Q,使得△APQ的面積為10,則點P的坐標為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是射線BM上的一個動點(P不與點B重合),∠AOB= 30°,∠ABM=60°.當∠OAP=______時,以點A、O、B中的任意兩點和點P為頂點的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠ABC=60°,E是AD的中點,點P是對角線BD上的動點,當AP+PE的值最小時,PC的長是( )

A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,DE垂直平分AB ,分別交AB、BC于點D 、E,MN垂直平分AC,分別交AC、BC于點M、N,連接AE,AN.

(1)如圖1,若∠BAC= 100°,求∠EAN的度數(shù);

(2)如圖2,若∠BAC=70°,求∠EAN的度數(shù);

(3)若∠BAC=a(a≠90°),請直接寫出∠EAN的度數(shù). (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聯(lián)想三角形外心的概念,我們可引入如下概念. 定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.
舉例:如圖1,若PA=PB,則點P為△ABC的準外心.
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD= AB,求∠APB的度數(shù).
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以點A為頂點作等腰RtABC,等腰RtADE,其中BAC=DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE

1)試判斷BD、CE的數(shù)量關(guān)系,并說明理由;

2)延長BDCE于點F試求BFC的度數(shù);

3)把兩個等腰直角三角形按如圖2放置,(1)、(2)中的結(jié)論是否仍成立?請說明理由.

查看答案和解析>>

同步練習冊答案