已知在△ABC中,∠C=90°,BC=8,AB=10,點(diǎn)G為重心,那么tan∠GCB的值為   
【答案】分析:作出草圖,連接CG并延長交AB于點(diǎn)D,根據(jù)重心定義可知點(diǎn)CD是△ABC的中線,求出CD,BD的長度,再過點(diǎn)D作DE⊥BC于點(diǎn)E,根據(jù)等腰三角形三線合一的性質(zhì)求出CE的長度,再利用勾股定理求出DE的長度,然后根據(jù)銳角三角函數(shù)的定義進(jìn)行解答即可.
解答:解:如圖,連接CG并延長交AB于點(diǎn)D,
∵點(diǎn)G為重心,
∴CD是△ABC的中線,
∴CD=BD=AB=×10=5,
過點(diǎn)D作DE⊥BC于點(diǎn)E,
則CE=BE=BC=×8=4,
在Rt△CDE中,DE===3,
∴tan∠GCB==
故答案為:
點(diǎn)評:本題考查了三角形的重心,銳角三角函數(shù)的定義,明確三角形的重心是三邊中線的交點(diǎn),并作出輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=5,BC=8,點(diǎn)G為重心,那么GA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一個(gè)外角,且∠ACD=(6x-10)°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若點(diǎn)D、E、F分別為AB、BC、AC邊的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn)(且不與點(diǎn)A、B重合),PQ∥AC,且交BC于點(diǎn)Q,以PQ為一邊在點(diǎn)B的異側(cè)作正方形PQMN,設(shè)正方形PQMN與矩形ADEF的公共部分的面積為S,BP的長為x,試求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在△ABC中,∠BAC為直角,AB=AC,D為AC上一點(diǎn),CE⊥BD于E.若BD平分∠ABC.
求證:CE=
12
BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點(diǎn)P.
(1)當(dāng)∠A=70°時(shí),求∠BPC的度數(shù);
(2)當(dāng)∠A=112°時(shí),求∠BPC的度數(shù);
(3)當(dāng)∠A=α?xí)r,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案