【題目】如圖所示的平面直角坐標(biāo)系中,直線m上各點(diǎn)的橫坐標(biāo)都為1(記作直線x=1),A,B,C三點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣3,0),C(﹣1,2).
(1)畫出△ABC關(guān)于直線x=1對稱的△A1B1C1并寫出A1,B1,C1的坐標(biāo).
(2)若△ABC內(nèi)部有一點(diǎn)H(﹣2,b),求點(diǎn)H關(guān)于直線x=a對稱的點(diǎn)H1的坐標(biāo).
【答案】(1)圖見解析,A1的坐標(biāo)為(4,3),B1的坐標(biāo)為(5,0),C1的坐標(biāo)為(3,2);(2)H1(2a+2,b).
【解析】
(1)分別作出三個(gè)頂點(diǎn)關(guān)于直線x=1的對稱點(diǎn),再首尾順次連接即可得;
(2)由點(diǎn)H的橫坐標(biāo)為﹣2,且關(guān)于直線x=a對稱知其對稱點(diǎn)的橫坐標(biāo)為﹣2+2(a+2),縱坐標(biāo)為b,從而得出答案.
解:(1)如圖所示,△A1B1C1即為所求,其中A1的坐標(biāo)為(4,3),B1的坐標(biāo)為(5,0),C1的坐標(biāo)為(3,2);
(2)點(diǎn)H關(guān)于直線x=a對稱的點(diǎn)H1的坐標(biāo)為(2a+2,b).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐助給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量 (單位:個(gè))與銷售單價(jià) (單位:元/個(gè))之間的對應(yīng)關(guān)系如圖所示:
(1) 與之間的函數(shù)關(guān)系是 .
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 (單位:元)與銷售單價(jià) (單位:元/個(gè))之間的函數(shù)關(guān)系式;
(3)若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°.
(1)如圖①,點(diǎn)D、E分別在線段AB、AC上. 請直接寫出線段BD和CE的位置關(guān)系: ;
(2)將圖①中的△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中的結(jié)論是否成立?若成立,請利用圖②證明;若不成立,請說明理由;
(3)如圖③,取BC的中點(diǎn)F,連接AF,當(dāng)點(diǎn)D落在線段BC上時(shí),發(fā)現(xiàn)AD恰好平分∠BAF,此時(shí)在線段AB上取一點(diǎn)H,使BH=2DF,連接HD,猜想線段HD與BC的位置關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:
①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長的最小值為4+2.
其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:PC=PF;
(3)若tan∠ABC=,AB=14,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學(xué)成績進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定的角度得到線段.
(1)用直尺和圓規(guī)作出旋轉(zhuǎn)中心(不寫作法,保留作圖痕跡);
(2)連接、、、,添加一定的條件,可以求出線段掃過的面積.(不再添加字母和輔助線,線段的長可用、、…表示,角的度數(shù)可用、、…表示).你添加的條件是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利? 說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com