【題目】勾股定理與黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠玉.生活中到處可見黃金分割的美.如圖,線段AB=1,點(diǎn)P1是線段AB的黃金分割點(diǎn)(AP1<BP1),點(diǎn)P2是線段AP1的黃金分割點(diǎn)(AP2<P1P2),點(diǎn)P3是線段AP2的黃金分割點(diǎn)(AP3<P2P3),…,依此類推,則APn的長(zhǎng)度是 .
【答案】
【解析】解:∵線段AB=1,點(diǎn)P1是線段AB的黃金分割點(diǎn)(AP1<BP1),∴BP1= AB= ,∴AP1=1﹣ = ,
∵點(diǎn)P2是線段AP1的黃金分割點(diǎn)(AP2<P1P2),
∴AP2= × =( )2 , ∴AP3=( )3 , ∴APn=( )n . 所以答案是( )n .
【考點(diǎn)精析】本題主要考查了黃金分割的相關(guān)知識(shí)點(diǎn),需要掌握把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),其中AC=0.618AB才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為A(0,1)、B(5,1)、C(7,3)、D(2,5).
(1)在如圖所示的平面直角坐標(biāo)系畫出該四邊形;
(2)四邊形ABCD的面積是________;
(3)四邊形ABCD內(nèi)(邊界點(diǎn)除外)一共有_____個(gè)整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明統(tǒng)計(jì)了他家今年5月份打電話的次數(shù)及通話時(shí)間,并列出了頻數(shù)分布表:
通話時(shí)間x/分鐘 | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
頻數(shù)(通話次數(shù)) | 20 | 16 | 9 | 5 |
則5月份通話次數(shù)中,通話時(shí)間不超過15分鐘的所占百分比是( 。
A. 10% B. 40% C. 50% D. 90%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫出其中最省錢的購(gòu)買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF、BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC。
(1)求證;OE=OF;(2)若BC=,求AB的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形且AB=AC,BD是⊙O的直徑,過點(diǎn)A做AP∥BC交DB的延長(zhǎng)線于點(diǎn)P,連接AD.
(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是2,cos∠ABC= ,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)和是反比例函數(shù)圖象上兩點(diǎn),若,求的值;
(3)若M(x1,y1)和N(x2,y2)兩點(diǎn)在直線AB上,如圖2所示,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請(qǐng)?zhí)骄慨?dāng)x1、x2滿足什么關(guān)系時(shí),MN∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.
通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.
證法1:如圖1,延長(zhǎng)BC到D,過C畫CE∥BA.
∵BA∥CE(作圖2所知),
∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內(nèi)錯(cuò)角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),
∴∠A+∠B+∠ACB=180°(等量代換).
如圖3,過BC上任一點(diǎn)F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請(qǐng)你試一試.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com