【題目】如圖, ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰

)求點(diǎn)的坐標(biāo).

)如圖, 軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過軸于點(diǎn),求的值.

【答案】(1)點(diǎn)的坐標(biāo)為;(2

【解析】試題分析:(1)如圖1,過CCMx軸于M點(diǎn),則可以求出△MAC≌△OBA,可得CM=OA=2MA=OB=4,即可得到結(jié)論;

2)如圖2,過DDQOPQ點(diǎn),則DE=OQ,利用三角形全等的判定定理可得△AOP≌△PQD,進(jìn)一步可得PQ=OA=2,即OP-DE=2

試題解析:解:(1)如圖1,過CCMx軸于M點(diǎn).

∵∠MAC+∠OAB=90°OAB+∠OBA=90°,∴∠MAC=∠OBA

在△MAC和△OBA中,∵∠CMA=∠AOB=90°,MAC=∠OBA,AC=AB,

∴△MAC≌△OBA(AAS),CM=OA=2,MA=OB=4,OM=OA+AM=2+4=6,∴點(diǎn)C的坐標(biāo)為(-6-2)

2)如圖2,過DDQOPQ點(diǎn),則DE=OQ,OP-DE=OP-OQ=PQ

∵∠APO+∠QPD=90°,APO+∠OAP=90°,∴∠QPD=∠OAP

在△AOP和△PQD中,∵∠AOP=∠PQD=90°OAP=∠QPD,AP=PD,∴△AOP≌△PQD(AAS)PQ=OA=2,即OP-DE=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由相同的花盆按一定的規(guī)律組成的正多邊形圖案,其中第1個(gè)圖形一共有6個(gè)花盆,第2個(gè)圖形一共有12個(gè)花盆,第3個(gè)圖形一共有20個(gè)花盆,…,則第n個(gè)圖形中花盆的個(gè)數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,FAD的中點(diǎn),作,垂足E在線段上,連接EF、CF,則下列結(jié)論;,中一定成立的是______ 把所有正確結(jié)論的序號(hào)都填在橫線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋中,有若干個(gè)白色乒乓球和4個(gè)黃色乒乓球,每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回袋中,通過大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在40%,那么,估計(jì)袋中白色乒乓球的個(gè)數(shù)為(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意有理數(shù)a,b,定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)對(duì)于任意有理數(shù)m,n,請(qǐng)你重新定義一種運(yùn)算“”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動(dòng):購(gòu)買原價(jià)超過200元的商品,超過200元的部分可以享受打折優(yōu)惠,若購(gòu)買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)的函數(shù)關(guān)系的圖象如圖所示,則超過200元的部分可以享受的優(yōu)惠是( 。

A. 打五折 B. 打六折 C. 打七折 D. 打八折

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)解答過程填空(寫出推理理由或根據(jù)):

如圖,已知∠DAF=F,B=D,試說明AB//DC

證明∵∠DAF=F( 已知)

ADBF ( )

∴∠D=DCF( )

∵∠B=D( )

∴∠ =DCF(等量代換)

AB//DC( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,CD=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.

(1)求證:△ABG≌△AFG;

(2)求GC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時(shí),她決定購(gòu)買若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20/個(gè).甲文具店的銷售方案是:購(gòu)買該筆記本的數(shù)量不超過5個(gè)時(shí),原價(jià)銷售;購(gòu)買該筆記本超過5個(gè)時(shí),從第6個(gè)開始按標(biāo)價(jià)的八折出售:乙文具店的銷售方案是:不管購(gòu)買多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.

(1)若設(shè)莉莉要購(gòu)買xx>5)個(gè)該款筆記本,請(qǐng)用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購(gòu)買全部該款筆記本所需的費(fèi)用;

(2)在(1)的條件下,莉莉購(gòu)買多少個(gè)筆記本時(shí),到乙文具店購(gòu)買全部筆記本所需的費(fèi)用與到甲文具店購(gòu)買全部筆記本所需的費(fèi)用相同?

查看答案和解析>>

同步練習(xí)冊(cè)答案