某商場將每件進(jìn)價(jià)為60元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加20件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設(shè)后來該商品每件降價(jià)x元,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤7000元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結(jié)合題意寫出當(dāng)x取何值時,商場獲利潤不少于7000元.
(1)若商店經(jīng)營該商品不降價(jià),則一天可獲利潤100×(100-60)=4000(元).
答:商場經(jīng)營該商品原來一天可獲利潤4000元;

(2)①依題意得:(100-60-x)(100+20x)=7000,
即x2-35x+150=0,
解得:x1=5,x2=30.
經(jīng)檢驗(yàn):x1=5,x2=30都是方程的解,且符合題意.
答:若商場經(jīng)營該商品一天要獲利潤7000元,則每件商品應(yīng)降價(jià)5元或30元;
②依題意得:y=(100-60-x)(100+20x),
即y=-20x2+700x+4000=-20(x-17.5)2+10125.
該函數(shù)圖象的草圖如右圖所示:
觀察圖象可得:當(dāng)5≤x≤30時,y≥7000,
故當(dāng)5≤x≤30時,商店所獲利潤不少于7000元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC是邊長為4的等邊三角形,AB在x軸上,點(diǎn)C在第一象限,AC交y軸于點(diǎn)D,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求B、C、D三點(diǎn)的坐標(biāo);
(2)拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求它的解析式;
(3)過點(diǎn)D作DEAB交經(jīng)過B、C、D三點(diǎn)的拋物線于點(diǎn)E,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,與x軸相交于A、B兩點(diǎn)(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO
(1)求出B點(diǎn)坐標(biāo)和這個二次函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用長為24米的籬笆,一面利用10米的墻,圍成一個中間隔有一道籬笆的長方形花園.設(shè)花園的寬AB為x米,面積為y米2
(1)求y與x之間的函數(shù)關(guān)系式
(2)當(dāng)寬AB為多少是,圍成面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,3),C點(diǎn)在x軸的正半軸上,且到原點(diǎn)的距離為1.點(diǎn)P、Q分別從A、B兩點(diǎn)同時出發(fā),以相同的速度分別向x軸、y軸的正方向作勻速直線運(yùn)動,直線PQ交直線AB于D.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線及直線AB解析式;
(2)設(shè)AP的長為m,△PBQ的面積為S,求出S關(guān)于m的函數(shù)關(guān)系式.
(3)作PE⊥AB于E,當(dāng)P、Q運(yùn)動時,線段DE的長是否改變?若改變請說明理由,若不改變,請求出DE的長;
(4)有一個以AB為邊的,且由兩個與△AOB全等的三角形拼結(jié)而成的平行四邊形ABST,試求出T點(diǎn)的坐標(biāo)(畫出圖形,直接寫出結(jié)果,不需求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在學(xué)校田徑運(yùn)動會上,九年級的一名高個子男生拋實(shí)心球,已知實(shí)心球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如圖所示,如果這個男生的拋球處A點(diǎn)坐標(biāo)為(0,2),實(shí)心球在空中線路的最高點(diǎn)B點(diǎn)的坐標(biāo)是(6,5).
(1)求這個二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠(yuǎn)為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計(jì)算說明.(
15
≈3.873)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知A點(diǎn)坐標(biāo)為(6,0),B點(diǎn)坐標(biāo)為(0,8),⊙A與y軸相切,AB交⊙O于點(diǎn)P,過點(diǎn)P作⊙A的切線交y軸于點(diǎn)C,交x軸于點(diǎn)D.
(1)證明:AD=AB;
(2)求經(jīng)過A,D,C三點(diǎn)的拋物線的函數(shù)關(guān)系式;
(3)若點(diǎn)M在第一象限,且在(2)中的拋物線上,求四邊形AMCD面積的最大值及此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)為了增收節(jié)支,設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元∕件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),根據(jù)所描出的點(diǎn)猜想y是x的什么函數(shù),并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx-2與x軸交于點(diǎn)A(-1,0)、B(4,0).點(diǎn)M、N在x軸上,點(diǎn)N在點(diǎn)M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點(diǎn)M的橫坐標(biāo)為m.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
(2)求點(diǎn)C在這條拋物線上時m的值.
(3)將線段CN繞點(diǎn)N逆時針旋轉(zhuǎn)90°后,得到對應(yīng)線段DN.
①當(dāng)點(diǎn)D在這條拋物線的對稱軸上時,求點(diǎn)D的坐標(biāo).
②以DN為直角邊作等腰直角三角形DNE,當(dāng)點(diǎn)E在這條拋物線的對稱軸上時,直接寫出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
))

查看答案和解析>>

同步練習(xí)冊答案