【題目】如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于, 兩點,點的坐標為,點在第一象限內(nèi),點是二次函數(shù)圖象的頂點,點是一次函數(shù)的圖象與軸的交點,過點作軸的垂線,垂足為,且.
()求直線和直線的解析式.
(2)點是線段上一點,點是線段上一點, 軸,射線與拋物線交于點,過點作軸于點, 于點,當與的乘積最大時,在線段上找一點(不與點,點重合),使的值最小,求點的坐標和的最小值.
()如圖,直線上有一點,將二次函數(shù)沿直線平移,平移的距離是,平移后拋物線使點,點的對應點分別為點,點;當是直角三角形時,求t的值.
【答案】(1), ;
(2)點, .
(3),t的值為, 或.
【解析】試題分析:
試題解析:( )代入得,
∴一次函數(shù)表達式為,
∵,
∴
∵軸,
∴,
在和中,
,
∴,
∴,
∵,
∴,
設的坐標為,代入二次函數(shù),
解得, ,
∵在第一象限,
∴,點,
∵是二次函數(shù)的頂點,
∴,
設直線、解析式分別為, ,
將, 代入直線解析式得解得.
將, 代入直線解析式得,解得.
∴, .
()如圖所示, 與交點為,
過作軸的平行線,
過作的垂線,交于點,連接,
設點,則,
, ,
,
∵,
且比值為常數(shù),
當最大時, 的值也最大,
,
當時, 取最大值,
也最大,此時點.
代入二次函數(shù)得,
得或(舍),
∴,
令,得,
,
為等腰直角三角形, ,
又∵,
∴,
∵,
∴為等腰直角三角形, ,
要使的值最小,即使的值最小,
當垂直時, 的值最小,
此時,代入直線解析式得,
∴點,
.
()如圖所示,直線與軸交于點,過作軸的垂線,垂足為,
令,可求得, 的坐標為.
,
,
設橫坐標平移,縱坐標平移,
, ,
,
,
①當時,
.
②當時,
,解得.
.
③當時,
,解得,
,
綜上所述, 的值為, 或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D作勻速運動,那么△APB的面積S與點P運動的路程之間的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).下列結(jié)論:
①ac<0;②4a﹣2b+c>0;③拋物線與x軸的另一個交點是(4,0);
④點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需再添加兩個條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A.AB=DB,∠ A=∠ D
B.DB=AB,AC=DE
C.AC=DE,∠C=∠E
D.∠ C=∠ E,∠ A=∠ D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點,點B的坐標為(3,0),與y軸相交于點C(0,﹣3),頂點為D.
(1)求出拋物線y=x2+bx+c的表達式;
(2)連結(jié)BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m.
①當m為何值時,四邊形PEDF為平行四邊形.
②設四邊形OBFC的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙的半徑為, 為直徑, 為弦. 與交于點,將 沿著翻折后,點與圓心重合,延長至,使,鏈接.
()求的長.
()求證: 是⊙的切線.
()點為的中點,在延長線上有一動點,連接交于點,交于點(與、不重合).則為一定值.請說明理由,并求出該定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某;@球隊13名同學的身高如下表:
身高(cm) | 175 | 180 | 182 | 185 | 188 |
人數(shù)(個) | 1 | 5 | 4 | 2 | 1 |
則該;@球隊13名同學身高的眾數(shù)和中位數(shù)分別是( )
A.182,180
B.180,180
C.180,182
D.188,182
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com