下列說法或求值中正確的是


  1. A.
    數(shù)學(xué)公式的平方根是±9
  2. B.
    數(shù)學(xué)公式的平方根是±3
  3. C.
    數(shù)學(xué)公式=±2
  4. D.
    1的立方根是±1
B
分析:首先化簡根式,再根據(jù)平方根、算術(shù)平方根、立方根的定義即可求解.
解答:A.∵=9,∴9的平方根是±3,故此選項(xiàng)錯(cuò)誤;
B.∵=9,∴9的平方根是±3,故此選項(xiàng)正確;
C.=2,故此選項(xiàng)錯(cuò)誤;,
D.1的立方根是1,故此選項(xiàng)錯(cuò)誤;
故選:B.
點(diǎn)評(píng):本題考查了平方根、立方根的定義.注意一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列各題中解題方法或說法正確的個(gè)數(shù)有( 。
(1)用換元法解方程
x
x-1
+
2x-2
x
+3=0,設(shè)
x
x-1
=y,則原方程可化為y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非負(fù)數(shù)的和為零解,則原式可以化為(x-2)2+
y-6

=0;
(4)四個(gè)全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,過△ABC頂點(diǎn)A作BC邊上的高AD和中線AE,點(diǎn)D是垂足,點(diǎn)E是BC中點(diǎn),規(guī)定λA=
DEBE
.特別地,當(dāng)D、E重合時(shí),規(guī)定λA=0.另外對(duì)λB、λC也作類似規(guī)定.

(1)①當(dāng)△ABC中,AB=AC時(shí),則λA=
0
0
;②當(dāng)△ABC中,λAB=0時(shí),則△ABC的形狀是
等邊三角形
等邊三角形
;
(2)如圖2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如圖3,正方形網(wǎng)格中,格點(diǎn)△ABC的λA=
2
2

(4)判斷下列三種說法的正誤(正確的打“√”錯(cuò)誤的打“×”)
①若△ABC中λA<1,則△ABC為銳角三角形
×
×
;
②若△ABC中λA=1,則△ABC為直角三角形
;
③若△ABC中λA>1,則△ABC為鈍角三角形

(5)通過本題解答,同學(xué)們應(yīng)該有這樣的認(rèn)識(shí):一個(gè)無論多么陌生、多么綜合的問題,其實(shí)都來自于書本已學(xué)的基礎(chǔ)知識(shí).因此,我們今后應(yīng)重視基礎(chǔ)知識(shí)的學(xué)習(xí);同時(shí)在解決問題時(shí)或者解決問題后,應(yīng)該思考該問題的本質(zhì)和目的:①鞏固哪些基礎(chǔ)知識(shí);②培養(yǎng)我們哪些方面能力;③向我們滲透哪些數(shù)學(xué)思想.本題之所以是一道綜合題,就是因?yàn)樯婕暗降闹R(shí)點(diǎn)多、面廣.下面就請你談?wù)劚绢}中所用到的、已學(xué)過的性質(zhì)、定理、公理或判定等.(至少列舉兩條)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法或求值中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法或求值中正確的是(  )
A.
81
的平方根是±9
B.
81
的平方根是±3
C.
4
=±2
D.1的立方根是±1

查看答案和解析>>

同步練習(xí)冊答案