先化簡(jiǎn),再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.
解:[(a+b)2﹣(a﹣b)2]•a
=(a2+2ab+b2﹣a2+2ab﹣b2)•a
=4ab•a
=4a2b;
當(dāng)a=﹣1,b=5時(shí),
原式=4×(﹣1)2×5=20
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,以點(diǎn)P(﹣1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(B在C的左側(cè)),交y軸于A、D兩點(diǎn)(A在D的下方),AD=2,將△ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫(huà)出線(xiàn)段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);
(3)動(dòng)直線(xiàn)l從與BM重合的位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線(xiàn)l與CM交點(diǎn)為E,點(diǎn)Q為BE的中點(diǎn),過(guò)點(diǎn)E作EG⊥BC于G,連接MQ、QG.請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),OQ⊥BC于點(diǎn)Q,過(guò)點(diǎn)B作半圓O的切線(xiàn),交OQ的延長(zhǎng)線(xiàn)于點(diǎn)P,PA交半圓O于R,則下列等式中正確的是( 。
A. = B. = C. = D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD,BD,CD.
(1)求證:AD=CD;
(2)若AB=10,cos∠ABC=,求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是eO的直徑,C是»AB的中點(diǎn),eO的切線(xiàn)BD交AC的延長(zhǎng)線(xiàn)于點(diǎn)D,E 是OB的中點(diǎn),CE的延長(zhǎng)線(xiàn)交切線(xiàn)BD于點(diǎn)F,AF交eO于點(diǎn)H,連接BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC的頂點(diǎn)都在方格線(xiàn)的交點(diǎn)(格點(diǎn))上,如果將△ABC繞C點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com