【題目】如圖,四邊形內(nèi)接于,的直徑,點(diǎn)的延長(zhǎng)線上,延長(zhǎng)的延長(zhǎng)線于點(diǎn),點(diǎn)的中點(diǎn),

1)求證:的切線;

2)求證:是等腰三角形;

3)若,,求的值及的長(zhǎng).

【答案】1)見解析;(2)見解析;(3,

【解析】

1)根據(jù)圓的切線的定義來(lái)證明,證∠OCD=90°即可;

2)根據(jù)全等三角形的性質(zhì)和四邊形的內(nèi)接圓的外角性質(zhì)來(lái)證;

3)根據(jù)已知條件先證CDB∽△ADC,由相似三角形的對(duì)應(yīng)邊成比例,求CB的值,然后求求的值;連結(jié)BE,RtFEBRtAEB中,利用勾股定理來(lái)求EF即可.

解:(1)如圖1,連結(jié),

的直徑,

點(diǎn)的中點(diǎn),

,

的切線

1

2四邊形內(nèi)接于

,

是等腰三角形

3)如圖2,連結(jié),

設(shè),

中,

,

由(1)可知,又

,

中,

,

,

的直徑,,

解得

2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A60°,點(diǎn)DAC上,連接BD作等邊三角形BDE,連接OE

(1)如圖1,求證:OEAD

(2)如圖2,連接CE,求證:∠OCE=∠ABD;

(3)如圖3,在(2)的條件下,延長(zhǎng)EO交⊙O于點(diǎn)G,在OG上取點(diǎn)F,使OF2OE,延長(zhǎng)BD到點(diǎn)M使BDDM,連接MF,若tanBMFOD3,求線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有兩個(gè)小島,,某漁船在海中的處測(cè)得小島D位于東北方向上,且相距,該漁船自西向東航行一段時(shí)間到達(dá)點(diǎn)處,此時(shí)測(cè)得小島恰好在點(diǎn)的正北方向上,且相距,又測(cè)得點(diǎn)與小島相距

(1)的值;

(2)求小島,之間的距離(計(jì)算過(guò)程中的數(shù)據(jù)不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)為長(zhǎng)為5的線段上一點(diǎn),且,過(guò),且,以為鄰邊作矩形,將線段繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到線段,優(yōu)弧,交,設(shè)旋轉(zhuǎn)角為

1)若扇形的面積為,則的度數(shù)為_______

2)連接,判斷與扇形所在圓的位置關(guān)系,并說(shuō)明理由.

3)設(shè)為直線上一點(diǎn),沿所在直線折疊矩形,若折疊后所在的直線與扇形所在的相切,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次中考體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):級(jí):優(yōu)秀;級(jí):良好;級(jí):及格;級(jí):不及格),并將測(cè)試結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

1)本次抽樣測(cè)試的學(xué)生人數(shù)是 人;

2)圖1的度數(shù)是 ,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該縣九年級(jí)有學(xué)生4500名,如果全部參加這次中考體育科目測(cè)試,請(qǐng)估計(jì)不及格的人數(shù)為

4)老師想從4位同學(xué)(分別記為、,其中為小明)中隨機(jī)選擇兩位同學(xué)了解平時(shí)訓(xùn)練情況,請(qǐng)用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3[2.3)=2,則下列說(shuō)法正確的是__________(寫出所有正確說(shuō)法).

①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;

②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7

③方程4[x]+3(x)+[x)=11的解為1<x<1.5;

④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).

【答案】②③

【解析】分析:1)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(2)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(3)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(4)結(jié)合x的取值范圍,分類討論,利用題目中給出的方法計(jì)算后判定即可.

詳解:

當(dāng)x=1.7時(shí),

[x]+x+[x

=[1.7]+1.7+[1.7=1+2+2=5,故錯(cuò)誤;

當(dāng)x=﹣2.1時(shí),

[x]+x+[x

=[﹣2.1]+﹣2.1+[﹣2.1

=﹣3+﹣2+﹣2=﹣7,故正確;

當(dāng)1x1.5時(shí),

4[x]+3x+[x

=4×1+3×2+1

=4+6+1

=11,故正確;

④∵﹣1x1時(shí),

當(dāng)﹣1x﹣0.5時(shí),y=[x]+x+x=﹣1+0+x=x﹣1,

當(dāng)﹣0.5x0時(shí),y=[x]+x+x=﹣1+0+x=x﹣1,

當(dāng)x=0時(shí),y=[x]+x+x=0+0+0=0,

當(dāng)0x0.5時(shí),y=[x]+x+x=0+1+x=x+1,

當(dāng)0.5x1時(shí),y=[x]+x+x=0+1+x=x+1,

y=4x,則x1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,

當(dāng)﹣1x1時(shí),函數(shù)y=[x]+x+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故錯(cuò)誤,

故答案為:②③

點(diǎn)睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結(jié)合x的取值范圍分情況討論即可.

型】填空
結(jié)束】
19

【題目】先化簡(jiǎn)再求值: ,其中, .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)B,Cx軸上,A,D兩點(diǎn)分別在反比例函數(shù)y=﹣x0)與yx0)的圖象上,若ABCD的面積為4,則k的值為:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,PBC上一動(dòng)點(diǎn),過(guò)PAP的垂線交CDE,將翻折得到,延長(zhǎng)FPABH,連結(jié)AE,PEACG.

1)求證;

2)當(dāng)時(shí),求AE的長(zhǎng);

3)當(dāng)時(shí),求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ykx+b與反比例函數(shù)yx0)的圖象交于A1,4)、B4,1)兩點(diǎn),與x軸交于C點(diǎn).

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)圖象直接回答:在第一象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)值大于反比例函數(shù)值?

3)點(diǎn)Pyx0)圖象上的一個(gè)動(dòng)點(diǎn),作PQx軸于Q點(diǎn),連接PC,當(dāng)SCPQSCAO時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案