【題目】雙胞胎兄弟小明和小亮在同一班讀書周五1600時放學后小明和同學走路回家,途中沒有停留小亮騎車回家他們各自與學校的距離s()與用去的時間t()的關(guān)系如圖所示根據(jù)圖象提供的有關(guān)信息下列說法中錯誤的是( )

A. 兄弟倆的家離學校1000

B. 他們同時到家,用時30

C. 小明的速度為50/

D. 小亮中間停留了一段時間后,再以80/分的速度騎回家

【答案】C

【解析】A.根據(jù)函數(shù)圖象右上端點的縱坐標可知,兄弟倆的家離學校1000米,故A正確;

B.根據(jù)函數(shù)圖象右上端點的橫坐標可知,兄弟倆同時到家,用時30分鐘,故B正確;

C.根據(jù)小明與學校的距離s()與用去的時間t()的函數(shù)關(guān)系可知,小明的速度為1000÷30 (/),故C錯誤;

D.根據(jù)折線的第三段的端點坐標可知,小亮用5分鐘走了400米,速度為400÷5=80(/),故D正確,

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設(shè)∠AEM=α(0°<α<90°),給出下列四個結(jié)論:
①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④SEMN=
上述結(jié)論中正確的個數(shù)是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC,A、B、C之和為多少?為什么?

A+B+C=180°

理由:作∠ACD=A,并延長BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運動員在一場籃球比賽中的技術(shù)統(tǒng)計如表所示:

技術(shù)

上場時間(分鐘)

出手投籃(次)

投中
(次)

罰球得分

籃板
(個)

助攻(次)

個人總得分

數(shù)據(jù)

46

66

22

10

11

8

60

注:表中出手投籃次數(shù)和投中次數(shù)均不包括罰球.
根據(jù)以上信息,求本場比賽中該運動員投中2分球和3分球各幾個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入表是某周的生產(chǎn)情況超產(chǎn)為正、減產(chǎn)為負

星期

增減

根據(jù)記錄可知前三天共生產(chǎn)多少輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)多少輛;

該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象;

2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當y<0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍.了解信息如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元;經(jīng)洽談:甲店每買一副球拍贈一盒乒乓球;乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5).問:

(1)當購買乒乓球x盒時,兩種優(yōu)惠辦法各應(yīng)付款多少元?(用含x的代數(shù)式表示)

(2)如果要購買15盒乒乓球時,請你去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“保護好環(huán)境,拒絕冒黑煙”.某市公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在該線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC,BC相切于點E,F(xiàn),與AB分別交于點G,H,且EH的延長線和CB的延長線交于點D,則CD的長為

查看答案和解析>>

同步練習冊答案