(2012•營(yíng)口)如圖所示,兩個(gè)建筑物AB和CD的水平距離為30m,張明同學(xué)住在建筑物AB內(nèi)10樓P室,他觀測(cè)建筑物CD樓的頂部D處的仰角為30°,測(cè)得底部C處的俯角為45°,求建筑物CD的高度.(
3
取1.73,結(jié)果保留整數(shù).)
分析:過(guò)點(diǎn)P作PE⊥CD于E,則四邊形BCEP是矩形,得到PE=BC=30,在Rt△PDE中,利用∠DPE=30°,PE=30,求得DE的長(zhǎng);在Rt△PEC中,利用∠EPC=45°,PE=30求得CE的長(zhǎng),利用CD=DE﹢CE即可求得結(jié)果.
解答:解:過(guò)點(diǎn)P作PE⊥CD于E,則四邊形BCEP是矩形.
∴PE=BC=30.
在Rt△PDE中,∵∠DPE=30°,PE=30,
∴DE=PE×tan30°=30×
3
3
=10
3

在Rt△PEC中,∵∠EPC=45°,PE=30,
∴CE=PE×tan45°=30×1=30.
∴CD=DE﹢CE=30﹢10
3
=30﹢17.3≈47(m)
答:建筑物CD的高約為47 m.
點(diǎn)評(píng):本題考查俯角、仰角的定義,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,菱形ABCD的邊長(zhǎng)為2,∠B=30°.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B-C-D的路線(xiàn)向點(diǎn)D運(yùn)動(dòng).設(shè)△ABP的面積為y(B、P兩點(diǎn)重合時(shí),△ABP的面積可以看做0),點(diǎn)P運(yùn)動(dòng)的路程為x,則y與x之間函數(shù)關(guān)系的圖象大致為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,-1)、B(-1,1)、C(0,-2).
(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為
(1,-1)
(1,-1)
;
(2)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過(guò)點(diǎn)B1的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,實(shí)線(xiàn)部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點(diǎn)P在⊙Q上.
(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在⊙P上的直角三角形場(chǎng)地ABC,其中∠C=90°,求場(chǎng)地的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,在等腰梯形ABCD中,AD∥BC,過(guò)點(diǎn)D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,直線(xiàn)y=-
43
x+8
分別交x軸、y軸于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)分別交x軸、y軸于C、D兩點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)求△BCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案