【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在邊OA上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系.

(1)求OE的長及經(jīng)過O,D,C三點拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長度的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長度的速度向點C運動,當點P到達點B時,兩點同時停止運動,設運動時間為t秒,當t為何值時,DP=DQ;
(3)若點N在(1)中拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點坐標;若不存在,請說明理由.

【答案】
(1)

解:∵CE=CB=5,CO=AB=4,

∴在Rt△COE中,OE= = =3,

設AD=m,則DE=BD=4﹣m,

∵OE=3,

∴AE=5﹣3=2,

在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m= ,

∴D(﹣ ,﹣5),

∵C(﹣4,0),O(0,0),

∴設過O、D、C三點的拋物線為y=ax(x+4),

∴﹣5=﹣ a(﹣ +4),解得a= ,

∴拋物線解析式為y= x(x+4)= x2+ x;


(2)

解:∵CP=2t,

∴BP=5﹣2t,

∵BD= ,DE= = ,

∴BD=DE,

在Rt△DBP和Rt△DEQ中,

∴Rt△DBP≌Rt△DEQ(HL),

∴BP=EQ,

∴5﹣2t=t,

∴t= ;


(3)

解:∵拋物線的對稱軸為直線x=﹣2,

∴設N(﹣2,n),

又由題意可知C(﹣4,0),E(0,﹣3),

設M(m,y),

①當EN為對角線,即四邊形ECNM是平行四邊形時,

則線段EN的中點橫坐標為 =﹣1,線段CM中點橫坐標為

∵EN,CM互相平分,

=﹣1,解得m=2,

又M點在拋物線上,

∴y= ×22+ ×2=16,

∴M(2,16);

②當EM為對角線,即四邊形ECMN是平行四邊形時,

則線段EM的中點橫坐標為 ,線段CN中點橫坐標為 =﹣3,

∵EM,CN互相平分,

=﹣3,解得m=﹣6,

又∵M點在拋物線上,

∴y= ×(﹣6)2+ ×(﹣6)=16,

∴M(﹣6,16);

③當CE為對角線,即四邊形EMCN是平行四邊形時,

則M為拋物線的頂點,即M(﹣2,﹣ ).

綜上可知,存在滿足條件的點M,其坐標為(2,16)或(﹣6,16)或(﹣2,﹣ ).


【解析】(1)由折疊的性質(zhì)可求得CE、CO,在Rt△COE中,由勾股定理可求得OE,設AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D點坐標,結(jié)合C、O兩點,利用待定系數(shù)法可求得拋物線解析式;(2)用t表示出CP、BP的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(3)可設出N點坐標,分三種情況①EN為對角線,②EM為對角線,③EC為對角線,根據(jù)平行四邊形的性質(zhì)可求得對角線的交點橫坐標,從而可求得M點的橫坐標,再代入拋物線解析式可求得M點的坐標.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,過點A(0,4)的圓的圓心坐標為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線y= x2+bx+c經(jīng)過C、B兩點,與x軸的另一交點為D.

(1)點B的坐標為( , ),拋物線的表達式為;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).

(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“書香八桂,閱讀圓夢”讀書活動中,某中學設置了書法、國學誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學都參加了比賽,該班班長為了了解本班同學參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出九(2)全班人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學生社團為了解本校學生喜歡球類運動的情況,隨機抽取了若干名學生進行問卷調(diào)查,要求每位學生只能填寫一種自己喜歡的球類運動,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.
請根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)參加調(diào)查的人數(shù)共有人;在扇形圖中,m=;將條形圖補充完整;
(2)如果該校有3500名學生,則估計喜歡“籃球”的學生共有多少人?
(3)該社團計劃從籃球、足球和乒乓球中,隨機抽取兩種球類組織比賽,請用樹狀圖或列表法,求抽取到的兩種球類恰好是“籃球”和“足球”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD 中,AB=2,點E 在邊AD 上,∠ABE=45°,BE=DE,連接BD,點P 在線段DE 上,過點P 作PQ∥BD 交BE 于點Q,連接QD.設PD=x,△PQD 的面積為y,則能表示y 與x 函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為直線MN上一點,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D為OB的中點,DE⊥DC交MN于E.

(1)如圖1,若點B在OP上,則
①ACOE(填“<”,“=”或“>”);
②線段CA、CO、CD滿足的等量關(guān)系式是
(2)將圖1中的等腰Rt△ABO繞O點順時針旋轉(zhuǎn)α(0°<α<45°),如圖2,那么(1)中的結(jié)論②是否成立?請說明理由;
(3)將圖1中的等腰Rt△ABO繞O點順時針旋轉(zhuǎn)α(45°<α<90°),請你在圖3中畫出圖形,并直接寫出線段CA、CO、CD滿足的等量關(guān)系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.
下面有三個推斷:
①當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是(
A.①
B.②
C.①②
D.①③

查看答案和解析>>

同步練習冊答案