如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點是停止,它們運動的速度都是每秒1個單位長度.設(shè)E運動秒x時,△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.
【答案】分析:首先根據(jù)點D的坐標(biāo)求得點A的坐標(biāo),從而求得線段OA和線段OC的長,然后根據(jù)運動時間即可判斷三角形EOF的面積的變化情況.
解答:解:∵D(5,4),AD=2.
∴OC=5,CD=4  OA=5
∴運動x秒(x<5)時,OE=OF=x,
作EH⊥OC于H,AG⊥OC于點G,
∴EH∥AG
∴△EHO∽△AGO

即:
∴EH=x
∴S△EOF=OF•EH=×x×x=x2,
故A、B選項錯誤;
當(dāng)點F運動到點C時,點E運動到點A,此時點F停止運動,點E在AD上運動,△EOF的面積不變,
點在DC上運動時,如右圖,
EF=11-x,OC=5
∴S△EOF=OC•CE=×(11-x)×5=-x+是一次函數(shù),故C正確,
故選C.
點評:本題考查了動點問題的函數(shù)圖象,解題的關(guān)鍵是根據(jù)動點確定分段函數(shù)的圖象.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,Rt△AOC的頂點A(-1,3),∠ACO=90°,點O為坐標(biāo)原點.將Rt△AOC繞點O順時針旋轉(zhuǎn)90°,得到Rt△A′OC′.設(shè)直線AA′與x軸交于點M、與y軸交于點N,拋物線經(jīng)過點C、M、N.解答下列問題:
(1)求直線AA′的解析式;
(2)求拋物線的解析式;
(3)在拋物線上是否存在這樣的點P,使四邊形PA′C′N成為直角梯形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當(dāng)BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=
12
S梯形AOBC?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當(dāng)BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=數(shù)學(xué)公式S梯形AOBC?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當(dāng)BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=S梯形AOBC?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當(dāng)BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=S梯形AOBC?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案