【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.
(1)求證:△ABC≌△ADC.
(2)若∠BCD=60°,AC=BC,求∠ADB的度數(shù).
【答案】(1)詳見解析;(2)∠ADB=15°.
【解析】
(1)根據(jù)角平分線的性質(zhì)可得∠DAC=∠BAC,從而利用SAS,可判定全等.
(2)根據(jù)△ABC≌△ADC.可知BC=DC,∠ACB=∠ACD=30°,已知∠BCD=60°,故△BCD是等邊三角形.即∠CBD=60°,在△ABC中AC=BC,∠ACB=30°,可得∠CDA=75°,進(jìn)而求得∠ADB=15°.
解(1)∵AC是∠BAD的角平分線.
∴∠BAC=∠DAC,
∵AB=AD,AC=AC,
∴△ABC≌△ADC.
(2)∵△ABC≌△ADC.
∴BC=DC,∠ACB=∠ACD=30°,
∵∠BCD=60°,
∴△BCD是等邊三角形.
∴∠CBD=60°,
∵AC=BC,
∴∠CDA=75°,
∴∠ADB=15°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.如圖,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若tan∠PAO=,求邊AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)O在AB上,BC=CD,過點(diǎn)C作⊙O的切線,分別交AB,AD的延長(zhǎng)線于點(diǎn)E,F(xiàn).
(1)求證:AF⊥EF;(2)若cosA=,BE=1,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線F的解析式為:y=2x2﹣4nx+2n2+n,n為實(shí)數(shù).
(1)求拋物線F頂點(diǎn)的坐標(biāo)(用n表示),并證明:當(dāng)n變化時(shí)頂點(diǎn)在一條定直線l上;
(2)如圖,射線m是(1)中直線l與x軸正半軸夾角的平分線,點(diǎn)M,N都在射線m上,作MA⊥x軸、NB⊥x軸,垂足分別為點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),當(dāng)MA+NB=MN時(shí),試判斷是否為定值,若是,請(qǐng)求出定值;若不是,說明理由.
(3)已知直線y=kx+b與拋物線F中任意一條都相截,且截得的長(zhǎng)度都為,求這條直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過點(diǎn)B作BD⊥AB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長(zhǎng).
②若△BDC為直角三角形,求所有滿足條件的BD的長(zhǎng).
(3)若BC=EC= ,則= .(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分別為AC、CD的中點(diǎn),連接BM、MN、BN.
(1)求證:BM=MA;
(2)若∠BAD=60°,求BN的長(zhǎng);
(3)當(dāng)∠BAD= °時(shí),BN=1.(直接填空)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某班級(jí)決定開展球類活動(dòng),要求每個(gè)學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項(xiàng)參加訓(xùn)練(只選擇一項(xiàng)),根據(jù)學(xué)生的報(bào)名情況制成如下統(tǒng)計(jì)表:
項(xiàng)目 | 籃球 | 足球 | 排球 | 乒乓球 | 羽毛球 |
報(bào)名人數(shù) | 12 | 8 | 4 | a | 10 |
占總?cè)藬?shù)的百分比 | 24% | b |
(1)該班學(xué)生的總?cè)藬?shù)為 人;
(2)由表中的數(shù)據(jù)可知:a= ,b= ;
(3)報(bào)名參加排球訓(xùn)練的四個(gè)人為兩男(分別記為A、B)兩女(分別記為C、D),現(xiàn)要隨機(jī)在這4人中選2人參加學(xué)校組織的校級(jí)訓(xùn)練,請(qǐng)用列表或樹狀圖的方法求出剛好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件A型服裝計(jì)酬16元,加工1件B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com