【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.

1)求證:△ABC≌△ADC

2)若∠BCD60°,AC=BC,求∠ADB的度數(shù).

【答案】(1)詳見解析;(2)∠ADB15°

【解析】

1)根據(jù)角平分線的性質(zhì)可得∠DAC=BAC,從而利用SAS,可判定全等.

2)根據(jù)△ABC≌△ADC.可知BC=DC,∠ACB=∠ACD30°,已知∠BCD60°,故△BCD是等邊三角形.即∠CBD60°,在△ABC中AC=BC,∠ACB30°,可得∠CDA75°,進(jìn)而求得∠ADB15°

解(1)∵AC是∠BAD的角平分線.

∴∠BAC=DAC

AB=AD,AC=AC,

∴△ABC≌△ADC

2)∵△ABC≌△ADC

BC=DC,∠ACB=∠ACD30°,

∵∠BCD60°

∴△BCD是等邊三角形.

∴∠CBD60°,

AC=BC,

∴∠CDA75°,

∴∠ADB15°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.如圖,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OPOA

1)求證:OCP∽△PDA;

2)若tanPAO,求邊AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)O在AB上,BC=CD,過點(diǎn)C作⊙O的切線,分別交AB,AD的延長(zhǎng)線于點(diǎn)E,F(xiàn).

1)求證:AF⊥EF;(2)若cosA=,BE=1,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線F的解析式為:y2x24nx+2n2+n,n為實(shí)數(shù).

1)求拋物線F頂點(diǎn)的坐標(biāo)(用n表示),并證明:當(dāng)n變化時(shí)頂點(diǎn)在一條定直線l上;

2)如圖,射線m是(1)中直線lx軸正半軸夾角的平分線,點(diǎn)M,N都在射線m上,作MAx軸、NBx軸,垂足分別為點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),當(dāng)MA+NBMN時(shí),試判斷是否為定值,若是,請(qǐng)求出定值;若不是,說明理由.

3)已知直線ykx+b與拋物線F中任意一條都相截,且截得的長(zhǎng)度都為,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點(diǎn)BBDAB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長(zhǎng).

②若△BDC為直角三角形,求所有滿足條件的BD的長(zhǎng).

3)若BCEC ,則   .(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,∠ABC90°,ACAD2,M、N分別為ACCD的中點(diǎn),連接BM、MN、BN

(1)求證:BMMA;

(2)若∠BAD60°,求BN的長(zhǎng);

(3)當(dāng)∠BAD   °時(shí),BN1(直接填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某班級(jí)決定開展球類活動(dòng),要求每個(gè)學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項(xiàng)參加訓(xùn)練(只選擇一項(xiàng)),根據(jù)學(xué)生的報(bào)名情況制成如下統(tǒng)計(jì)表:

項(xiàng)目

籃球

足球

排球

乒乓球

羽毛球

報(bào)名人數(shù)

12

8

4

a

10

占總?cè)藬?shù)的百分比

24%

b

1)該班學(xué)生的總?cè)藬?shù)為   人;

2)由表中的數(shù)據(jù)可知:a   b   ;

3)報(bào)名參加排球訓(xùn)練的四個(gè)人為兩男(分別記為AB)兩女(分別記為C、D),現(xiàn)要隨機(jī)在這4人中選2人參加學(xué)校組織的校級(jí)訓(xùn)練,請(qǐng)用列表或樹狀圖的方法求出剛好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1A型服裝計(jì)酬16元,加工1B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1A型服裝和2B型服裝需4小時(shí),加工3A型服裝和1B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)

(1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時(shí)?

(2)一段時(shí)間后,公司規(guī)定:每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

同步練習(xí)冊(cè)答案