【題目】如圖,在Rt△ABC中,∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連接AD、CF,ADCF交于點M,ABCF交于點H.

(1)求證:△ABD≌△FBC;

(2)已知AD=6,求四邊形AFDC的面積;

(3)在△ABC中,設BC=a,AC=b,AB=c,當∠ACB≠90°時,c≠a+b.在任意△ABC中,c=a+b+k.a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結論即可).

【答案】(1)詳見解析;(2)18;(3)-12<k<12.

【解析】

(1)根據(jù)四邊形ABFG、BCED是正方形得到兩對邊相等,一對直角相等,根據(jù)圖形利用等式的性質得到一對角相等,利用SAS即可得到三角形全等;
(2)連接FD,由(1)的三角形全等,得到AD=FC,∠BAD=∠BFC,利用等式的性質及垂直定義得到ADCF垂直,四邊形AFDC面積=三角形ACD面積+三角形ACF面積+三角形DMF面積-三角形ACM面積,求出即可;
(3)根據(jù)a,bc為三角形三邊長,利用兩邊之和大于第三邊,兩邊之差小于第三邊列出關于c的不等式,將ab的值代入求出c的范圍,進而確定出c2的范圍,即a2+b2+k的范圍,即可求出k的范圍.

(1)∵四邊形ABFG、BCED是正方形,

AB=FB,CB=DB,ABF=CBD=90°,

∴∠ABF+∠ABC=CBD+∠ABC,

即∠ABD=CBF,

在△ABD和△FBC中,

,

∴△ABD≌△FBC(SAS);

(2)連接FD,設CFAB交于點N,

∵△ABD≌△FBC,

AD=FC,BAD=BFC,

∴∠AMF=180°﹣BAD﹣CNA=180°﹣(BFC+∠BNF)=180°﹣90°=90°,

ADCF,

AD=6,

FC=AD=6,

S四邊形AFDC=SACD+SACF+SDMF﹣SACM

=ADCM+CFAM+DMFM﹣AMCM,

=3CM+3AM+(6﹣AM)(6﹣CM)﹣AMCM,

=18;

(3)∵在△ABC中,設BC=a=3,AC=b=2,AB=c,

a﹣bca+b,即1c5,

1c225,即1a2+b2+k=13+k25,

解得:﹣12k12.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°AB=10cm,BC=6cm,若點P從點A出發(fā)以每秒1cm的速度沿折線ACBA運動,設運動時間為t秒(t0).

1)若點PAC上,且滿足PA=PB時,求出此時t的值;

2)若點P恰好在∠BAC的角平分線上(但不與A點重合),求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點D、E.

(1)求證:△ABC為直角三角形.

(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD內一點,PE⊥AB,PF⊥AD,垂足分別是EF,若PE=PF,下列說法不正確的是( )

A. P一定在菱形ABCD的對角線AC

B. 可用HL證明Rt△AEP≌Rt△AFP

C. AP平分∠BAD

D. P一定是菱形ABCD的兩條對角線的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點CCF平行于BAPQ于點F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過點O的直線l將四邊形分成兩部分,直線lOC所成的角設為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].

(理解)

若點D與點A重合,則這個操作過程為FZ[45°,3];

(嘗試)

(1)若點D恰為AB的中點(如圖2),求θ;

(2)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上,求出a的值;若點E落在四邊形OABC的外部,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AD平分∠BAC,BDAD,垂足為D,過DDEAC,交ABE,若BD=7,AD=24,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場進行有獎促銷活動,規(guī)定顧客購物達到一定金額就可以獲得一次轉動轉盤的機會(如圖),當轉盤停止轉動時指針落在哪一區(qū)域就可獲得相應的獎品(若指針落在兩個區(qū)域的交界處,則重新轉動轉盤).

轉動轉盤的次數(shù)n

100

150

200

500

800

1000

落在“10元兌換券的次數(shù)m

68

111

136

345

564

701

落在“10元兌換券的頻率

0.68

a

0.68

0.69

b

0.701

(1)a的值為   ,b的值為   ;

(2)假如你去轉動該轉盤一次,獲得“10元兌換券的概率約是   ;(結果精確到0.01)

(3)根據(jù)(2)的結果,在該轉盤中表示“20元兌換券區(qū)域的扇形的圓心角大約是多少度?(結果精確到1°)

查看答案和解析>>

同步練習冊答案