【題目】觀察下列圖形:已知a∥b,在第一個(gè)圖中,可得∠1+∠2=180°,則按照以上規(guī)律,∠1+∠2+∠P1+…+∠Pn=度.

【答案】(n+1)×180
【解析】解:如圖,分別過(guò)P1、P2、P3作直線AB的平行線P1E,P2F,P3G,

∵AB∥CD,

∴AB∥P1E∥P2F∥P3G.

由平行線的性質(zhì)可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°

∴(1)∠1+∠2=180°,(2)∠1+∠P1+∠2=2×180,(3)∠1+∠P1+∠P2+∠2=3×180°,(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,

∴∠1+∠2+∠P1+…+∠Pn=(n+1)×180°.

所以答案是:(n+1)×180.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的性質(zhì)的相關(guān)知識(shí),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)x=-1時(shí),代數(shù)式2x(3xa)1的值是2,則a______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將方格紙中的三角形ABC先向右平移2格得到三角形DEF,再將三角形DEF向上平移3格得到三角形GPH.

(1)作圖(不要求寫作法):按上面步驟作出經(jīng)過(guò)兩次平移后分別得到的三角形;
(2)填空:圖中與AC既平行又相等的線段有 , 圖中有個(gè)平行四邊形?
(3)線段AD與BF是什么位置關(guān)系和數(shù)量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種水果的價(jià)格如表:

購(gòu)買的質(zhì)量(千克)

不超過(guò)10千克

超過(guò)10千克

每千克價(jià)格

6元

5元

張欣兩次共購(gòu)買了25千克這種水果(第二次多于第一次),共付款132元.問(wèn)張欣第一次、第二次分別購(gòu)買了多少千克這種水果?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過(guò)點(diǎn)(1,0)作x軸的垂線交l2于點(diǎn)A1,過(guò)點(diǎn)A1作y軸的垂線交l2于點(diǎn)A2,過(guò)點(diǎn)A2作x軸的垂線交l2于點(diǎn)A3,過(guò)點(diǎn)A3作y軸的垂線交l2于點(diǎn)A4,…依次進(jìn)行下去,則點(diǎn)A2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式: ≤1并將其解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式(組),并把解集表示在數(shù)軸上.
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一列按一定順序和規(guī)律排列的數(shù):

第一個(gè)數(shù)是;

第二個(gè)數(shù)是;

第三個(gè)數(shù)是;

對(duì)任何正整數(shù)n,第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于

(1)經(jīng)過(guò)探究,我們發(fā)現(xiàn):,

設(shè)這列數(shù)的第5個(gè)數(shù)為a,那么,,,哪個(gè)正確?

請(qǐng)你直接寫出正確的結(jié)論;

(2)請(qǐng)你觀察第1個(gè)數(shù)、第2個(gè)數(shù)、第3個(gè)數(shù),猜想這列數(shù)的第n個(gè)數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于”;

(3)設(shè)M表示,,…,,這2016個(gè)數(shù)的和,即,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案