【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)把這個二次函數(shù)化成y=a(x﹣h)2+k的形式;
(2)寫出二次函數(shù)的對稱軸和頂點坐標(biāo);
(3)求二次函數(shù)與x軸的交點坐標(biāo);
(4)畫出這個二次函數(shù)的圖象;

(5)觀察圖象并寫出y隨x增大而減小時自變量x的取值范圍.
(6)觀察圖象并寫出當(dāng)x為何值時,y>0.

【答案】
(1)解:y=x2﹣4x+3=(x﹣2)2﹣1,則該拋物線解析式是y=(x﹣2)2﹣1
(2)解:由(1)知,該拋物線解析式為:y=(x﹣2)2﹣1,

所以對稱軸是直線x=2,頂點坐標(biāo)為(2,﹣1)


(3)解:∵二次函數(shù)y=x2﹣4x+3=(x﹣1)(x﹣3),

∴二次函數(shù)與x軸的交點坐標(biāo)分別是:(1,0)(3,0)


(4)解:其圖象如圖所示:


(5)解:由圖象知,當(dāng)y隨x增大而減小時x≤2
(6)解:由圖象知,當(dāng)x<1或x>3時,y>0
【解析】(1)利用配方法先提出二次項系數(shù),再加上一次項系數(shù)的一半的平方來湊完全平方式,把一般式轉(zhuǎn)化為頂點式.(2)根據(jù)(1)中的二次函數(shù)解析式直接寫出答案;(3)將已知函數(shù)解析式轉(zhuǎn)化為兩點式方程即可得到答案;(4)根據(jù)頂點坐標(biāo),拋物線與y軸的交點坐標(biāo)以及拋物線與x軸的交點坐標(biāo)畫出圖象;(5)(6)根據(jù)圖象寫出x的取值范圍.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把菱形ABOC繞點O順時針旋轉(zhuǎn)得到菱形DFOE,則下列角中不是旋轉(zhuǎn)角的為(

A.∠BOF
B.∠AOD
C.∠COE
D.∠COF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊三角形ABC的邊長為12,點PAC上一點,點DCB的延長線上,且BD=AP,連接PDAB于點E,PEAB于點F,則線段EF的長為( 。

A. 6 B. 5

C. 4.5 D. AP的長度有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,D、E、 F分別是△ABC的三邊的延長線上一點,且AB=BF,BC=CDAC=AE,=5cm2,則的值是(

A. 15 cm2 B. 20 cm2 C. 30 cm2 D. 35 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=90°,O為射線BC上一點,以點O為圓心, OB長為半徑作⊙O,將射線BA繞點B按順時針方向旋轉(zhuǎn)至BA′,若BA′與⊙O相切,則旋轉(zhuǎn)的角度α(0°<α<180°)等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣22),B﹣3,﹣2

1)若點C與點A關(guān)于原點O對稱,則點C的坐標(biāo)為   ;

2)將點A向右平移5個單位得到點D,則點D的坐標(biāo)為   ;

3)由點A,B,C,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個橫、縱坐標(biāo)均為整數(shù)的點,求所取的點橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

同步練習(xí)冊答案