【題目】如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)M(﹣2,﹣1),且P(﹣1,﹣2)為雙曲線(xiàn)上的一點(diǎn),Q為坐標(biāo)平面上一動(dòng)點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B

1)寫(xiě)出正比例函數(shù)和反比例函數(shù)的關(guān)系式;

2)當(dāng)點(diǎn)Q在直線(xiàn)MO上運(yùn)動(dòng)時(shí),直線(xiàn)MO上是否存在這樣的點(diǎn)Q,使得OBQOAP面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;

3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線(xiàn)上運(yùn)動(dòng)時(shí),作以OP、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.

【答案】1yx;(2)存在,Q12,1)和Q2(﹣2,﹣1);(32+4

【解析】

(1)正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)M(-2,-1),待定系數(shù)法可求它們解析式;
(2)由點(diǎn)Q在yx上,設(shè)出Q點(diǎn)坐標(biāo),表示OBQ,由反比例函數(shù)圖象性質(zhì),可知OAP面積為1,則根據(jù)面積相等可構(gòu)造方程,問(wèn)題可解;

(3)因?yàn)樗倪呅蜲PCQ是平行四邊形,所以O(shè)P=CQ,OQ=PC,而點(diǎn)P(-1,-2)是定點(diǎn),所以O(shè)P的長(zhǎng)也是定長(zhǎng),所以要求平行四邊形OPCQ周長(zhǎng)的最小值就只需求OQ的最小值.

解:(1)設(shè)正比例函數(shù)解析式為ykx,

將點(diǎn)M(﹣2,﹣1)坐標(biāo)代入得k,所以正比例函數(shù)解析式為yx,

同樣可得,反比例函數(shù)解析式為

2)當(dāng)點(diǎn)Q在直線(xiàn)OM上運(yùn)動(dòng)時(shí),

設(shè)點(diǎn)Q的坐標(biāo)為Qm,m),

于是SOBQOBBQ×m×mm2

SOAP|(﹣1×(﹣2|1,

所以有,m21,解得m±2,

所以點(diǎn)Q的坐標(biāo)為Q12,1)和Q2(﹣2,﹣1);

3)因?yàn)樗倪呅?/span>OPCQ是平行四邊形,所以OPCQ,OQPC,

而點(diǎn)P(﹣1,﹣2)是定點(diǎn),所以OP的長(zhǎng)也是定長(zhǎng),

所以要求平行四邊形OPCQ周長(zhǎng)的最小值就只需求OQ的最小值,

因?yàn)辄c(diǎn)Q在第一象限中雙曲線(xiàn)上,所以可設(shè)點(diǎn)Q的坐標(biāo)為Qn,),

由勾股定理可得OQ2n2+=(n2+4,

所以當(dāng)(n20n0時(shí),OQ2有最小值4,

又因?yàn)?/span>OQ為正值,所以OQOQ2同時(shí)取得最小值,

所以OQ有最小值2,由勾股定理得OP,

所以平行四邊形OPCQ周長(zhǎng)的最小值是2OP+OQ)=2+2)=2+4

(或因?yàn)榉幢壤瘮?shù)是關(guān)于yx對(duì)稱(chēng),所以當(dāng)Q在反比例函數(shù)時(shí)候,OQ最短的時(shí)候,就是反比例與yx的交點(diǎn)時(shí)候,聯(lián)立方程組即可得到點(diǎn)Q坐標(biāo))

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙軸交于、,與軸交于點(diǎn)為⊙上不同于、的任意一點(diǎn),連接,過(guò)點(diǎn)分別作.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過(guò)程中,下列圖象中能表示的函數(shù)關(guān)系的部分圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AMBNCBN上一點(diǎn), BD平分∠ABN且過(guò)AC的中點(diǎn)O,交AM于點(diǎn)DDEBD,交BN于點(diǎn)E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為3,∠BAD60°,點(diǎn)EF在對(duì)角線(xiàn)AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF1,則DE+BF最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線(xiàn).如圖:一把直尺壓住射線(xiàn)OB,另一把直尺壓住射線(xiàn)OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線(xiàn)OP就是∠BOA的角平分線(xiàn).他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線(xiàn)上

B. 角平分線(xiàn)上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線(xiàn)的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷(xiāo)一種成本為每件元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),

求一次函數(shù)的表達(dá)式;

若該商場(chǎng)獲得利潤(rùn)為元,試寫(xiě)出利潤(rùn)與銷(xiāo)售單價(jià)之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面長(zhǎng)為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車(chē)場(chǎng)地ABCD,在ABBC邊各有一個(gè)2米寬的小門(mén)(不用鐵柵欄).設(shè)矩形ABCD的邊AD長(zhǎng)為x米,AB長(zhǎng)為y米,矩形的面積為S平方米,且xy

1)若所用鐵柵欄的長(zhǎng)為40米,求yx的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

2)在(1)的條件下,求Sx的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場(chǎng)地的面積為192平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為2cmP的圓心在射線(xiàn)OA上,且與點(diǎn)O的距離為6cm,如果P1cm/s的速度沿直線(xiàn)ABAB的方向移動(dòng),那么P與直線(xiàn)CD相切時(shí)P運(yùn)動(dòng)的時(shí)間是(

A.3秒或10B.3秒或8C.2秒或8D.2秒或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACBCAB345,⊙O沿著ABC的內(nèi)部邊緣滾動(dòng)一圈,若⊙O的半徑為1,且圓心O運(yùn)動(dòng)的路徑長(zhǎng)為18,則ABC的周長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案