如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.
(1)證明:連OC,如圖,
∵PD切⊙O于C,
∴OC⊥PD,
∵AB=AE,
∴∠2=∠E,
而OC=OB,
∴∠1=∠2,
∴∠1=∠E,
∴OC∥AE,
∴AD⊥PD;
(2)解:∵△ABE是等邊三角形,
∴∠A=60°,
∴∠COB=60°,
而∠OCP=90°,OB=OC=1,
∴∠P=30°,
∴OP=2OC=2,
∴BC=2-1=1.
(1)連OC,根據(jù)切線的性質(zhì)得到OC⊥PD,又AB=AE,OC=OB,則∠2=∠E,∠1=∠2,得到∠1=∠E,則OC∥AE,即可得到結(jié)論;
(2)根據(jù)等邊三角形的性質(zhì)得∠A=60°,則∠COB=60°,則∠P=30°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OP=2OC=2,從而求出BP
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖⊙P的圓心P在⊙O上,⊙O的弦AB所在的直線與⊙P切于C,若⊙P的半徑為r,⊙O的半徑為R.O和⊙P的面積比為9∶4,且PA=10,PB=4.8,DE=5,C、P、D三點共線

(1)求證:
(2),求AE的長;
(3)連結(jié)PD,求sin∠PDA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,AB=4,點C在⊙O上,CF⊥OC,且CF=BF.
小題1:證明BF是⊙O的切線;
小題2:設(shè)AC與BF的延長線交于點M,若MC=6,求∠MCF的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA 為⊙O的切線,B、D為⊙O上的兩點,如果∠APB=,∠ADB=.(1)試判斷直線PB與⊙O的位置關(guān)系,并說明理由;(2)如果D點是優(yōu)弧AB上的一個動點,當(dāng)且四邊形ADBP是菱形時,求扇形OAMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖19,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.銳角∠DAB的平分線AC交⊙O于點C,作CD⊥AD,垂足為D,直線CD與AB的延長線交于點E.
小題1:求證:AC平分∠DAB
小題2:過點O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
小題3:若CD=4,AC=4,求垂線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△內(nèi)接于⊙,點的延長線上,sinB=,∠CAD=30°⑴求證:是⊙的切線;⑵若,求的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以AB為直徑的⊙O經(jīng)過點C,D是AB延長線上一點,且DC=AC,∠CAB=30°
小題1:試判斷CD所在的直線與⊙O的位置關(guān)系,并說明理由
小題2:若AB=2,求陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O1和⊙O2的半徑分別為2cm和3cm,兩圓的圓心距為5cm,則兩圓的位置關(guān)
系是                                                          
A.外切B.外離C.相交D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD的上底BC長為1,弧OB、弧OD、弧BD的半徑相等,弧OB、弧BD所在圓的圓心分別為A、O.則圖中陰影部分的面積            .  

查看答案和解析>>

同步練習(xí)冊答案