已知二次函數(shù)數(shù)學(xué)公式與x軸交于A、B兩點(diǎn),A在B點(diǎn)的左邊,與y軸交于C點(diǎn),點(diǎn)P在第一象限的拋物線上,且在對(duì)稱軸右邊.S△PAC=4,求P點(diǎn)坐標(biāo).

解:∵二次函數(shù)的解析式為,且該函數(shù)圖象與x軸交于A、B兩點(diǎn),A在B點(diǎn)的左邊,與y軸交于C點(diǎn),
∴當(dāng)y=0時(shí),=0,
解得x1=1,x2=3,即A(1,0),B(3,0).
當(dāng)x=0時(shí),y=2,即C(0,2).
∴OC=2,OA=1,OB=3,AB=2.
如圖過點(diǎn)P作PE⊥x軸于點(diǎn)E.設(shè)P點(diǎn)的坐標(biāo)(x,)(x>0).
則S△PAC=S梯形OCPE-S△OAC-S△PAE=+2)x-×1×2-×(x-1)y=4.即x2-2x-12=0,
解得x=-2(舍去),或x=6.
當(dāng)x=6時(shí),y=8.
∴P點(diǎn)坐標(biāo)是(6,8).
答:P點(diǎn)坐標(biāo)是(6,8).
分析:如圖,過點(diǎn)P作PE⊥x軸于點(diǎn)E.將△PAC的面積轉(zhuǎn)化為S△PAC=S梯形OCPE-S△OAC-S△PAE
點(diǎn)評(píng):本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì).解答該題時(shí),注意轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:044

已知二次函數(shù)與x軸交于A(-2,0),B(4,0)且過點(diǎn)C(-1,5),求此拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖18-1所示,已知二次函數(shù)與x軸分別交于點(diǎn)A(2,0)、
B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0)
【小題1】求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);
【小題2】如圖18-1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;
【小題3】如圖18-2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;
【小題4】將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江慈溪育才中學(xué)九年級(jí)第一學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.

(1)求:二次函數(shù)的解析式及B點(diǎn)坐標(biāo);

(2)若將拋物線為對(duì)稱軸向右翻折后,得到一個(gè)新的二次函數(shù),已知二次函數(shù)與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D.點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));

①當(dāng)點(diǎn)E在二次函數(shù)y1的圖像上時(shí),求OP的長(zhǎng).

②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)線段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動(dòng),P點(diǎn)也同時(shí)停止運(yùn)動(dòng)).過Q點(diǎn)作x軸的垂線,與直線AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)),若P點(diǎn)運(yùn)動(dòng)t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河北石家莊初中畢業(yè)班教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖18-1所示,已知二次函數(shù)與x軸分別交于點(diǎn)A(2,0)、

B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0)

1.求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);

2.如圖18-1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;

3.如圖18-2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;

4.將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案