在平面直角坐標(biāo)系中,A、B為反比例函數(shù)的圖象上兩點(diǎn),A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)均為1,將的圖象繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)的對(duì)應(yīng)點(diǎn)為,B點(diǎn)的對(duì)應(yīng)點(diǎn)為.
(1)求旋轉(zhuǎn)后的圖象解析式;
(2)求、點(diǎn)的坐標(biāo);
(3)連結(jié).動(dòng)點(diǎn)從點(diǎn)出發(fā)沿線段以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā)沿線段以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,試探究:是否存在使為等腰直角三角形的值,若存在,求出的值;若不存在,說明理由.
(1)旋轉(zhuǎn)后的圖象解析式為.
(2)由旋轉(zhuǎn)可得(4,-1)、(1,-4).
(3)依題意,可知.若為直角三角形,則同時(shí)也是等腰三角形,因此,只需求使為直角三角形的值.
分兩種情況討論:
① 當(dāng)是直角,時(shí),如圖1,
∵AB′=8,B′A′==,AM=B′N=MN=t,
∴B′M=8-t,
∵,
∴.
解得 (舍去負(fù)值),
∴.
②當(dāng)是直角,時(shí),
如圖2,
∵AB′=8,B′A′==,AM=B′N=t,
∴B′M=MN=8-t,
∵,
∴,
解得 .
∵,,
∴此時(shí)t值不存在.
(此類情況不計(jì)算,通過畫圖說明t值不存在也可以)
綜上所述,當(dāng)時(shí),為等腰直角三角形.
【解析】(1)首先把x=1代入反比例函數(shù)y=(x>0)的解析式,求出對(duì)應(yīng)的y值,得到A點(diǎn)坐標(biāo),然后由旋轉(zhuǎn)的性質(zhì)得出∠AOA′=90°,OA=OA′,如果分別過A、A′作AM⊥y軸于M,A′N⊥x軸于N,連接OA,OA′,易證△OAM≌△OA′N,得到A′的坐標(biāo),從而求出旋轉(zhuǎn)后的圖象解析式;
(2)上問已經(jīng)求出A′的坐標(biāo),同樣求出點(diǎn)B′的坐標(biāo);
(3)首先運(yùn)用待定系數(shù)法求出直線A′B′的解析式,由斜率k的值可知∠A′B′A=45°.然后假設(shè)存在使△MNB'為等腰直角三角形的t值,那么分兩種情況討論:①∠B′NM=90°;②∠B′MN=90°.針對(duì)每一種情況,都可以利用等腰直角三角形中斜邊是直角邊的倍列出方程,從而求出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com