【題目】觀察下列式子的因式分解做法:

①x2-1=(x-1)(x+1)

②x31

=x3x+x1

=xx21+x1

=xx1)(x+1+x1

=x1[xx+1+1]

=x1)(x2+x+1);

③x41

=x4x+x1

=xx31+x1

=xx1)(x2+x+1+x1

=x1[xx2+x+1+1]

=x1)(x3+x2+x+1);

1)模仿以上做法,嘗試對x51進行因式分解;

2)觀察以上結(jié)果,猜想xn1= ;(n為正整數(shù),直接寫結(jié)果,不用驗證)

3)根據(jù)以上結(jié)論,試求45+44+43+42+4+1的值.

【答案】1)(x1)(x4+x3+x2+x+1)(2)(x1)(xn1+xn2+…+x2+x+1)(3

【解析】

1)類比上面的作法,逐步提取公因式分解因式即可;

2)由分解的規(guī)律直接得出答案即可;

3)把式子乘41,再把計算結(jié)果乘即可.

1x51

=x5x+x1

=xx41+x1

=xx1)(x3+x2+x+1+x1

=x1[xx3+x2+x+1+1]

=x1)(x4+x3+x2+x+1);

2xn1

=xnx+x1

=xxn-11+x1

=xx1)(xn-2+xn-3+…+x+1+x1

=x1[xxn-2+xn-3+…+x+1+1]

=x1)(xn1+xn2+…+x2+x+1);

345+44+43+42+4+1

=×(41)(45+44+43+42+4+1

=×(461

=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:問題:某班在購買啦啦操比賽的物資時,準備購買紅色、黃色,藍色三種顏色的啦啦球,其顏色不同則價格不同,第一次買了15個紅色啦啦球、7個黃色啦啦球、11個藍色啦啦球共用1084元,第二次買了2個紅色啦啦球、4個黃色啦啦球、3個藍色啦啦球共用304元,試問第三次買了紅、黃、藍啦啦球各一個共需多少元?(假定三次購買紅、黃、藍啦啦球單價不變)

解:設(shè)購買紅、黃、藍啦啦球的單價分別為x、yz元,依題意得:

上述方程組可變形為:

設(shè)x+y+zm,2x+zn,上述方程組又可化為:

①+4×②得:m   ,即x+y+z   

答:第三次購買紅、黃、藍啦啦球各一個共需   元.

閱讀后,細心的你,可以解決下列問題:

某同學(xué)買13支黑筆、5支紅筆、9個筆記本,共用去92.5元:如果買2支黑筆、4支紅筆、3個筆記本,則共用去32元,試問只買一支黑筆、一支紅筆、一個筆記本,共需多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點,過圓上一點C作⊙O的切線CF,分別交AD、BE于點M、N,連接AC、CB,若∠ABC=30°,則AM=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,CA=CB,CE=CD,ACB的頂點AECD的斜邊上,若AE=AD=,則BC的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,EAB邊的中點,以BE為邊作等邊BDE,連接AD、CD

1)求證:ADCD;

2)①畫圖:在AC邊上找一點H,使得BH+EH最。ㄒ螅簩懗鲎鲌D過程并畫出圖形,不用說明作圖依據(jù));

②當BC2時,求出BH+EH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是∠ACB的平分線,∠EDC=25,∠DCE=25,∠B=70

1)試證明:DEBC

2)求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O的半徑為5,弦BC=8,點A是⊙O上一點,且AB=AC,直線AO與BC交于點D,則AD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走9m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°.

(1)求∠BPQ的度數(shù);
(2)求該電線桿PQ的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1的各邊長按原法延長一倍得到正方形A2B2C2D2;以此進行下去…則正方形A4B4C4D4的面積為_____;正方形AnBnCnDn的面積為_____

查看答案和解析>>

同步練習冊答案