【題目】如圖,點(diǎn)D,E在△ABC的邊BC上,連接AD,AE.有下面三個(gè)等式:①AB=AC;②AD=AE;③BD=CE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,相構(gòu)成三個(gè)命題.解答下列問題
(1)寫出這三個(gè)命題,并直接判斷其是否是真命題;
(2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).
【答案】(1)三個(gè)命題如下:命題Ⅰ“如果①②成立,那么③成立”;命題Ⅱ“如果①③成立,那么②成立”;命題Ⅲ“如果②③成立,那么①成立,這三個(gè)命題都是真命題;(2)選擇命題Ⅱ“如果①③成立,那么②成立”.證明見解析.
【解析】
(1)根據(jù)真命題的定義即可得出結(jié)論,
(2)根據(jù)全等三角形的判定方法及全等三角形的性質(zhì)即可證明.
(1)三個(gè)命題如下:命題Ⅰ“如果①②成立,那么③成立”;
命題Ⅱ“如果①③成立,那么②成立”;
命題Ⅲ“如果②③成立,那么①成立,這三個(gè)命題都是真命題.
(2)選擇命題Ⅱ“如果①③成立,那么②成立”:
證明:∵AB=AC,
∴∠B=∠C,
在△ABD和△ACE中,AB=AC,∠B=∠C,BD=CE
∴△ABD≌△ACE(SAS),
∴AD=AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊延長線上的點(diǎn)D處,則AC邊掃過的圖形(陰影部分)的面積是cm2 . (結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張長方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G,D、C分別在M、N的位置上,若∠EFG=55°,求:
(1)∠FED的度數(shù);
(2)∠FEG的度數(shù);
(3)∠1和∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解:(1)﹣2+12a﹣18a (2)(x+4)-16x
(3)(x-2x)+2(x-2x)+1 (4)-28n+42m -14m n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式
B.平方差公式
C.兩數(shù)和的完全平方公式
D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________.
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,過點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=3,BC=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+3上的三點(diǎn),則y1 , y2 , y3的大小關(guān)系為( )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y2>y1
D.y3>y1>y2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com