(2009•貴陽)已知直角三角形的兩條邊長為3和4,則第三邊的長為   
5或

試題分析:本題已知直角三角形的兩邊長,但未明確這兩條邊是直角邊還是斜邊,因此兩條邊中的較長邊4既可以是直角邊,也可以是斜邊,所以求第三邊的長必須分類討論,即4是斜邊或直角邊的兩種情況,然后利用勾股定理求解
設(shè)第三邊為x,
(1)若4是直角邊,則第三邊x是斜邊,由勾股定理得:
32+42=x2,所以x=5;
(2)若4是斜邊,則第三邊x為直角邊,由勾股定理得:
32+x2=42,所以x=
點(diǎn)評:本題考查了利用勾股定理解直角三角形的能力,當(dāng)已知條件中沒有明確哪是斜邊時(shí),要注意討論,一些學(xué)生往往忽略這一點(diǎn),造成丟解
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,甲、乙兩盞路燈相距20米. 一天晚上,當(dāng)小明從路燈甲走到距路燈乙底部4米處時(shí),發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為          米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一塊直角三角形木板△ABC,將其在水平面上沿斜邊AB所在直線按順時(shí)針方向翻滾,使它滾動到的位置,若BC=1cm,AC=cm,則頂點(diǎn)A運(yùn)動到時(shí),點(diǎn)A所經(jīng)過的路徑是                   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某廣場一燈柱AB被一鋼纜CD固定,CD與地面成40°夾角,且CB=5米.(參考數(shù)據(jù):tan400=0.84, sin400=0.64, cos400)
小題1:求鋼纜CD的長度;(精確到0.1米)
小題2:若AD=2米,燈的頂端E距離A處1.6米,且∠EAB=120°,則燈的頂端E距離地面多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖,三個(gè)村莊A、B、C之間的距離分別為AB=5km,BC=12km,AC=13km.要從B修一
條公路BD直達(dá)AC.已知公路的造價(jià)為26000元/km,求修這條公路的最低造價(jià)是多少?
 
     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

“趙爽弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形.如果小正方形的面積為4,大正方形的面積為100,直角三角形中較小的銳角為α,則tanα的值等于___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,已知一坡面的坡度,則坡角為                    (  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方體的長為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,河岸AD、BC互相平行,橋AB垂直于兩岸,從C處看橋的兩端A、B,夾角∠BCA=60,測得BC=7m,則橋長AB   m(結(jié)果精確到1m =1.414 =1.732)

查看答案和解析>>

同步練習(xí)冊答案