【題目】對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.
(1)仿照以上方法計算:=______;=_____.
(2)若,寫出滿足題意的x的整數(shù)值______.
如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次 =1,這時候結(jié)果為1.
(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.
(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.
【答案】(1)2;6;(2)1,2,3;(3)3;(4)255
【解析】
(1)先估算和的大小,再由并新定義可得結(jié)果;
(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;
(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;
(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.
解:(1)∵22=4, 62=36,72=49,
∴6<<7,
∴[]=[2]=2,[]=6,
故答案為:2,6;
(2)∵12=1,22=4,且[]=1,
∴x=1,2,3,
故答案為:1,2,3;
(3)第一次:[]=10,
第二次:[]=3,
第三次:[]=1,
故答案為:3;
(4)最大的正整數(shù)是255,
理由是:∵[]=15,[]=3,[]=1,
∴對255只需進行3次操作后變?yōu)?/span>1,
∵[]=16,[]=4,[]=2,[]=1,
∴對256只需進行4次操作后變?yōu)?/span>1,
∴只需進行3次操作后變?yōu)?/span>1的所有正整數(shù)中,最大的是255,
故答案為:255.
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點,當OA⊥OB時,直線AB恒過一個定點,該定點坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點,DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD為AB邊上的高.動點P從點A出發(fā),沿著△ABC的三條邊逆時針走一圈回到A點,速度為2cm/s,設運動時間為t s.
(1)求CD的長;
(2)t為何值時,△ACP是等腰三角形?
(3)若M為BC上一動點,N為AB上一動點,是否存在M,N使得AM+MN 的值最?如果有,請直接寫出最小值,如果沒有,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )
A.大于0
B.等于0
C.小于0
D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點,且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=12厘米, BC=8厘米,點D為AB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動;當點Q的運動速度為下列哪個值時,能夠在某一時刻使△BPD與△CQP全等( )
A. 2或3厘米/秒 B. 4厘米/秒 C. 3厘米/秒 D. 4或6厘米/秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)作出△ABC關于y軸對稱的△ABlCl;
(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com