(2006•漳州)如圖,已知AB是⊙O的直徑,AC是弦,過點(diǎn)O作OD⊥AC于D,連接BC.
(1)求證:OD=BC;
(2)若∠BAC=40°,求的度數(shù).

【答案】分析:(1)根據(jù)垂徑定理得到AD=CD,再根據(jù)三角形的中位線定理進(jìn)行證明;
(2)根據(jù)圓周角定理得:圓周角的度數(shù)等于它所對的弧的度數(shù)的2倍,進(jìn)行求解.
解答:(1)證明:
證法一:∵AB是⊙O的直徑,
∴OA=OB.
又∵OD⊥AC,
∴AD=CD.
∴OD=BC.
證法二:∵AB是⊙O的直徑,
∴∠C=90°,OA=AB.
∵OD⊥AC即∠ADO=90°,
∴∠C=∠ADO.
又∵∠A=∠A,
∴△ADO∽△ACB.

∴OD=BC.

(2)解:解法一:∵AB是⊙O的直徑,∠A=40°,
∴∠C=90°.
的度數(shù)為:2×(90°+40°)=260°.
解法二:∵AB是⊙O的直徑,∠A=40°,
∴∠C=90°.
∴∠B=50°.
的度數(shù)為100°.
的度數(shù)為260°.
點(diǎn)評:熟練運(yùn)用垂徑定理和三角形的中位線定理證明;掌握弧的度數(shù)和它所對的圓周角的度數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣西河池市南丹縣中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2006•漳州)如圖,已知⊙O中,MN是直徑,AB是弦,MN⊥BC,垂足為C,由這些條件可推出結(jié)論    (不添加輔助線,只寫出1個結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2006•漳州)如圖,點(diǎn)O在直線AB上,OC⊥OD,若∠1=50°,則∠2=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省名校中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:填空題

(2006•漳州)如圖,已知⊙O中,MN是直徑,AB是弦,MN⊥BC,垂足為C,由這些條件可推出結(jié)論    (不添加輔助線,只寫出1個結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省漳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•漳州)如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點(diǎn)E,F(xiàn)(E在F左邊),以EF為邊作等邊三角形PEF,使頂點(diǎn)P在AD上,PE,PF分別交AC于點(diǎn)G,H.
(1)求△PEF的邊長;
(2)在不添加輔助線的情況下,當(dāng)F與C不重合時,從圖中找出一對相似三角形,并說明理由;
(3)若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有何數(shù)量關(guān)系并證明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省漳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•漳州)如圖,點(diǎn)O在直線AB上,OC⊥OD,若∠1=50°,則∠2=    度.

查看答案和解析>>

同步練習(xí)冊答案