【題目】如圖,長方形的長為15,寬為10,高為20,點離點的距離為5,螞蟻如果要沿著長方形的表面從點爬到點,需要爬行的最短距離是( )
A.35B.C.25D.
【答案】C
【解析】
要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體側(cè)面展開,然后利用兩點之間線段最短解答.
解:只要把長方體的右側(cè)表面剪開與前面這個側(cè)面所在的平面形成一個長方形,如第1個圖:
∵長方體的寬為10,高為20,點B離點C的距離是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB=,
只要把長方體的右側(cè)表面剪開與上面這個側(cè)面所在的平面形成一個長方形,如第2個圖:
∵長方體的寬為10,高為20,點B離點C的距離是5,
∴BD=CD+BC=20+5=25,AD=10;
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB=,
只要把長方體的上表面剪開與后面這個側(cè)面所在的平面形成一個長方形,如第3個圖:
∵長方體的寬為10,高為20,點B離點C的距離是5,
∴AC=CD+AD=20+10=30;
在直角三角形ABC中,根據(jù)勾股定理得:
∴AB=,
∵25<<,
∴螞蟻爬行的最短距離是25,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人以相同路線前往距離單位10的培訓(xùn)中心參加學(xué)習(xí).圖中分別表示甲,乙兩人前往目的地所走的路程s隨時間(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時;③乙走了8后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q再次展平,連接BN,MN,延長MN交BC于點G.有如下結(jié)論:①∠ABN= 60°;②AM=1;③;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是.其中正確結(jié)論的序號是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達(dá)B處,此時燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結(jié)果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的對角線與相交于點E,點G為的中點,連接,的延長線交的延長線于點F,連接.
(1)求證:;
(2)若,,判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標(biāo)有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果把一個奇數(shù)位的自然數(shù)各數(shù)為上的數(shù)字從最高位到個位依次排列,與從個位到最高位依次排列出的一串?dāng)?shù)字完全相同,相鄰兩個數(shù)位上的數(shù)字之差的絕對值相等(不等于0),且該數(shù)正中間的數(shù)字與其余數(shù)字均不同,我們把這樣的自然數(shù)稱為“階梯數(shù)”,例如自然數(shù)12321,從最高位到個位依次排出的一串?dāng)?shù)字是:1,2,3,2,1,從個位到最高位依次排出的一串?dāng)?shù)字仍是:1,2,3,2,1,且|1﹣2|=|2﹣3|=|3﹣2|=|2﹣1|=1,因此12321是一個“階梯數(shù)”,又如262,85258,…,都是“階梯數(shù)”,若一個“階梯數(shù)”t從左數(shù)到右,奇數(shù)位上的數(shù)字之和為M,偶數(shù)位上的數(shù)字之和為N,記P(t)=2N﹣M,Q(t)=M+N.
(1)已知一個三位“階梯數(shù)”t,其中P(t)=12,且Q(t)為一個完全平方數(shù),求這個三位數(shù);
(2)已知一個五位“階梯數(shù)”t能被4整除,且Q(t)除以4余2,求該五位“階梯數(shù)”t的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com