【題目】如圖,中,的平分線交于點(diǎn),過(guò)點(diǎn)于點(diǎn),交于點(diǎn),那么下列結(jié)論:

是等腰三角形;②;

③若,;④

其中正確的有(  )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】B

【解析】

根據(jù)角平分線的定義和平行線的性質(zhì)可得∠DBF =DFB,∠ECF=EFC,然后利用等角對(duì)等邊即可得出DB=DFEF=EC,從而判斷①和②;利用三角形的內(nèi)角和定理即可求出∠ABC+∠ACB,然后利用角平分線的定義和三角形的內(nèi)角和定理即可求出∠BFC,從而判斷③;然后根據(jù)∠ABC不一定等于∠ACB即可判斷④.

解:∵的平分線交于點(diǎn)

∴∠DBF=FBC,∠ECF=FCB

∴∠DFB=FBC,∠EFC=FCB

∴∠DBF =DFB,∠ECF=EFC

DB=DF,EF=EC

是等腰三角形,故①正確;

DE=DFEF= BDCE,故②正確;

∵∠A=50°

∴∠ABC+∠ACB=180°-∠A=130°

∴∠FBC+∠FCB=(∠ABC+∠ACB=65°

∴∠BFC=180°-(∠FBC+∠FCB=115°,故③正確;

∵∠ABC不一定等于∠ACB

∴∠FBC不一定等于∠FCB

BF不一定等于CF,故④錯(cuò)誤.

正確的有①②③,共3個(gè)

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植4-7棵,活動(dòng)結(jié)束后隨機(jī)抽查了若干名學(xué)生每人的植樹量,并分為四種類型,A4棵;B5棵;C6棵;D7棵,將各類的人數(shù)繪制成扇形圖(如圖甲)和條形圖(圖乙),回答下列問(wèn)題:

1)求這次抽查的學(xué)生數(shù);

2)補(bǔ)全圖甲和圖乙;

3)計(jì)算被抽查學(xué)生每人植樹量的平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象過(guò)點(diǎn)A(4,1)與正比例函數(shù)()的圖象相交于點(diǎn)B(,3),與軸相交于點(diǎn)C.

1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;

2)若點(diǎn)D是點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn),且過(guò)點(diǎn)D的直線DEACBOE求點(diǎn)E的坐標(biāo);

3)在坐標(biāo)軸上是否存在一點(diǎn),使.若存在請(qǐng)求出點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,AB=AC=6,BC=4,點(diǎn)D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),連接MP、PN、MN.

(1)求證:PMN是等腰三角形;

(2)將ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),

如圖2,當(dāng)點(diǎn)D、E分別在邊AC兩側(cè)時(shí),求證:PMN是等腰三角形;

當(dāng)ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),請(qǐng)直接寫出此時(shí)BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:

(1)每千克核桃應(yīng)降價(jià)多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)一次函數(shù)l1、l2的圖象如圖:

(1)分別求出l1l2兩條直線的函數(shù)關(guān)系式;

(2)求出兩直線與y軸圍成的ABP的面積;

(3)觀察圖象:請(qǐng)直接寫出當(dāng)x滿足什么條件時(shí),l1的圖象在l2的下方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( )

A.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

B.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D.以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD垂直BC于點(diǎn)D,且AD=BCBC上方有一動(dòng)點(diǎn)P滿足,則點(diǎn)PB、C兩點(diǎn)距離之和最小時(shí),∠PBC的度數(shù)為(

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtACB中,∠ACB90°ACBC,E點(diǎn)為射線CB上一動(dòng)點(diǎn),連結(jié)AE,作AFAEAFAE

1)如圖1,過(guò)F點(diǎn)作FDACACD點(diǎn),求證:FDBC;

2)如圖2,連結(jié)BFACG點(diǎn),若AG3,CG1,求證:E點(diǎn)為BC中點(diǎn);

3)當(dāng)E點(diǎn)在射線CB上,連結(jié)BF與直線AC交于G點(diǎn),若BC4BE3,則   (直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案