【題目】如圖,在長方形ABCD中,AB=CD=5厘米,AD=BC=4厘米動點PA出發(fā),以1厘米/秒的速度沿A→B運動,到B點停止運動;同時點QC點出發(fā),以2厘米/秒的速度沿C→B→A運動,到A點停止運動.設(shè)P點運動的時間為t(t > 0),當t=____________時,SADP=SBQD


【答案】s4s

【解析】

分兩種情況:(1)當點QCB上時,如圖1所示,(2)當點Q運動至BA上時,如圖2所示,分別根據(jù)三角形的面積公式即可列出關(guān)于t的方程,解方程即可.

解:分兩種情況:(1)當點QCB上時,如圖1所示:

SADPAD×AP2t,SBQDBQ×DC42t),

2t42t),解得:t;

2)當點Q運動至BA上時,如圖2所示:

SADPAD×AP2t,SBQDBQ×DA22t4),

2t22t4),解得:t4;

綜上可得:當ts4s時,SADPSBQD

故答案為:s4s

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD中,∠B60°,AB4,點EBC上,CE2,若點P是菱形上異于點E的另一點,CECP,則EP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,

1)求證:;

2)若,,,分別是,,,的中點,求證:線段與線段互相平分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形AOBC的頂點C的坐標是(24),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為每秒1個單位,設(shè)運動時間為t秒,過點PPEAOAB于點E

1)求直線AB的解析式;

2)在動點PQ運動的過程中,以B、QE為頂點的三角形是直角三角形,直按寫出t的值;

3)設(shè)△PEQ的面積為S,求S與時間t的函數(shù)關(guān)系,并指出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題計算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2
(1)計算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的C處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改進行駛,試問:消防車是否需要改道行駛?請說明理由.( 取1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點,過點ABC的平行線與BE的延長線相交于點F,連接CF

1)求證:四邊形CFAD為平行四邊形.

2)若∠BAC90°,AB4BD,請求出四邊形CFAD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點是直線上第一象限的點,點的坐標是是坐標原點,的面積為,則關(guān)于的函數(shù)關(guān)系式(取值范圍)是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度為米.

查看答案和解析>>

同步練習冊答案