【題目】二孩政策的落實引起了全社會的關注,某校學生數學興趣小組為了了解本校同學對父母生育二孩的態(tài)度,在學校抽取了部分同學對父母生育二孩所持的態(tài)度進行了問卷調查,調查分為非常贊同、贊同、無所謂、不贊同等四種態(tài)度.現將調查統(tǒng)計結果制成了如圖所示的兩幅統(tǒng)計圖,請結合這兩幅統(tǒng)計圖,回答下列問題:
(1)在這次問卷調查中,一共抽取了 名學生,a= %;
(2)請補全條形統(tǒng)計圖;
(3)持“不贊同”態(tài)度的學生人數的百分比所占扇形的圓心角為 °;
(4)若該校有1200名學生,請你估計該校學生對父母生育二孩持“贊同”和“非常贊同”兩種態(tài)度的人數之和.
【答案】(1)50,30;(2)補全條形統(tǒng)計見解析;(3)36;(4)720.
【解析】
(1)由贊同的人數20,所占,即可求出樣本容量,進而求出的值;
(2)由(1)可知抽查的人數,即可求出無所謂態(tài)度的人數,即可將條形統(tǒng)計圖補充完整;
(3)求出不贊成人數的百分數,即可求出圓心角的度數;
(4)求出“贊同”和“非常贊同”兩種態(tài)度的人數所占的百分數,用樣本估計總體的思想計算即可.
解:(1)(人,無所謂態(tài)度的人數為,則;
故答案為:50,30;
(2)無所謂態(tài)度的人數=50-10-20-5=15(人,
補全條形統(tǒng)計圖如圖所示:
(3)不贊成人數占總人數的百分數為,
持“不贊同”態(tài)度的學生人數的百分比所占扇形的圓心角為,
故答案為:36;
(4)“贊同”和“非常贊同”兩種態(tài)度的人數所占的百分數為,
則該校學生對父母生育二孩持“贊同”和“非常贊同”兩種態(tài)度的人數之和為(人.
科目:初中數學 來源: 題型:
【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)如圖①,在菱形ABCD中,∠ABC=120°,點M,N分別在AD,CD上,且∠MBN=60°,試判斷四邊形DMBN是否為“等鄰邊四邊形”?請說明理由.
(2)如圖②,在矩形ABCD中,AB=8,BC=12.5,點E在BC上,且BE=6,在矩形ABCD內或邊上,確定一點P,使四邊形ABEP為最大面積的“等鄰邊四邊形”,若能實現,請求出最大面積;若不能實現,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一個平行四邊形中,兩對平行于邊的直線將這個平行四邊形分為九個小平行四邊形,如果原來這個平行四邊形的面積為,而中間那個小平行四邊形(陰影部分)的面積為20平方厘米,則四邊形的面積是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-4,2)、B(0,4)、C(0,2),
(1)畫出△ABC關于點C成中心對稱的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
(2)△A1B1C和△A2B2C2關于某一點成中心對稱,則對稱中心的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校獎勵給王偉和李麗上海世博園門票共兩張,其中一張為指定日門票,另一張為普通日門票。王偉和李麗分別轉動下圖的甲、乙兩個轉盤(轉盤甲被二等分、轉盤乙被三等分)確定指定日門票的歸屬,在兩個轉盤都停止轉動后,若指針所指的兩個數字之和為 偶數,則王偉獲得指定日門票;若指針所指的兩個數字之和為奇數,則李麗獲得指定日門票;若指針指向分隔線,則重新轉動。你認為這個方法公平嗎?請畫樹狀圖或列表,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=120°,求∠ACB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點P從A出發(fā),沿A→B→C→D的路線運動,到D停止;點Q從D點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.
(1)求出a值;
(2)設點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關系式;
(3)求P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據調查,超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學用所學過的知識在一條筆直的道路上檢測車速.如圖,觀測點C到公路的距離CD為100米,檢測路段的起點A位于點C的南偏西60°方向上,終點B位于點C的南偏西45°方向上.某時段,一輛轎車由西向東勻速行駛,測得此車由A處行駛到B處的時間為4秒. 問此車是否超過了該路段16米/秒的限制速度?(參考數據: ≈1.4, ≈1.7)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①,正方形的兩邊分別在正方形的邊和上,連接.填空:線段與的數量關系為________;直線與所夾銳角的大小為________.
(2)如圖②,將正方形繞點順時針旋轉,在旋轉的過程中,(1)中的結論是否仍然成立,請說明理由.
(3)把圖②中的正方形都換成菱形,且,如圖③,直接寫出______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com