【題目】下列說法正確的是( )

A. 為了解蘇州市中學(xué)生的睡眠情況,應(yīng)該采用普查的方式

B. 某種彩票的中獎機(jī)會是,則買張這種彩票一定會中獎

C. 一組數(shù)據(jù),,,,,的眾數(shù)和中位數(shù)都是

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

【答案】C

【解析】

根據(jù)抽樣抽查、概率的定義、中位數(shù)以及方差的定義進(jìn)行判斷.

解:A、為了解蘇州市中學(xué)生的睡眠情況,應(yīng)該采用抽樣調(diào)查的方式,故本選項(xiàng)錯誤;
B、某種彩票的中獎機(jī)會是1%,則買100張這種彩票中獎的可能性很大,但不是一定中獎,故本選項(xiàng)錯誤;
C、一組數(shù)據(jù)1,5,3,2,3,4,8的眾數(shù)和中位數(shù)都是3,故本選項(xiàng)正確;
D、方差反映了一組數(shù)據(jù)的波動情況,方差越小數(shù)據(jù)越穩(wěn)定,故本選項(xiàng)錯誤.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)G,DC在直線a上,點(diǎn)E,F,A,B在直線b上,若ab,RtGEF從如圖所示的位置出發(fā),沿直線b向右勻速運(yùn)動,直到EGBC重合.運(yùn)動過程中GEF與矩形ABCD重合部分的面積(S)隨時(shí)間(t)變化的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤為w元.

(1)求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤最大?最大利潤是多少元?

(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤不低于6000元,請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從廠家以21元的價(jià)格購進(jìn)一批商品,該商品可以自行定價(jià),若每件商品售價(jià)為元,則可賣出(350-10)件,但物價(jià)局限定每件商品加價(jià)不能超過進(jìn)價(jià)的20%,商店計(jì)劃要賺400元,需要賣出多少件商品?每件商品應(yīng)售多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5的⊙Py軸交于點(diǎn)M(0,﹣4),N(0,﹣10)

(1)求點(diǎn)P的坐標(biāo);

(2)將⊙P繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°后得⊙A,交x軸于B、C,求過A、B、C三個點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過y軸上一個動點(diǎn)Mx軸的平行線,交雙曲線y= 于點(diǎn)A,交雙曲線于點(diǎn)B,點(diǎn)C、點(diǎn)Dx軸上運(yùn)動,且始終保持DCAB,則平行四邊形ABCD的面積是( 。

A. 7 B. 10 C. 14 D. 28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0)

(1)求拋物線的解析式和對稱軸;

(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最小?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)該拋物線有一點(diǎn)Dxy),使得SABCSDBC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CA=CB,CDAB且與OA的延長線交與點(diǎn)D

(1)判斷CD與⊙O的位置關(guān)系并說明理由;

(2)若∠ACB=120°,OA=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(2,2),B(2,﹣2).對于給定的線段AB及點(diǎn)PQ,給出如下定義:若點(diǎn)Q關(guān)于AB所在直線的對稱點(diǎn)Q′落在△ABP的內(nèi)部(不含邊界),則稱點(diǎn)Q是點(diǎn)P關(guān)于線段AB的內(nèi)稱點(diǎn).

(1)已知點(diǎn)P(4,﹣1).

Q1(1,﹣1),Q2(1,1)兩點(diǎn)中,是點(diǎn)P關(guān)于線段AB的內(nèi)稱點(diǎn)的是   ;

若點(diǎn)M在直線yx﹣1上,且點(diǎn)M是點(diǎn)P關(guān)于線段AB的內(nèi)稱點(diǎn),求點(diǎn)M的橫坐標(biāo)xM的取值范圍;

(2)已知點(diǎn)C(3,3),⊙C的半徑為r,點(diǎn)D(4,0),若點(diǎn)E是點(diǎn)D關(guān)于線段AB的內(nèi)稱點(diǎn),且滿足直線DEC相切,求半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案