【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,將△APB繞點(diǎn)B逆時針旋轉(zhuǎn)一定角度后,可得到△CQB.
(1)求點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠APB的度數(shù).

【答案】
(1)解:連接PQ,

由旋轉(zhuǎn)性質(zhì)有:

BQ=BP=8,QC=PA=6,∠QBC=∠ABP,∠BQC=∠BPA,

∴∠QBC+∠PBC=∠ABP+∠PBC

即∠QBP=∠ABC,

∵△ABC是正三角形,

∴∠ABC=60°,

∴∠QBP=60°,

∴△BPQ是正三角形,

∴PQ=BP=BQ=8


(2)解:在△PQC中,PQ=8,QC=6,PC=10

∴PQ2+QC2=PC2,

∴∠PQC=90°,

∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°


【解析】(1)由旋轉(zhuǎn)的性質(zhì)可以證明△PBQ是等邊三角形,即可解決問題.(2)利用勾股定理的逆定理證明∠PQC=90°,由∠BQC=∠APB,即可解決問題.
【考點(diǎn)精析】掌握等邊三角形的性質(zhì)和勾股定理的逆定理是解答本題的根本,需要知道等邊三角形的三個角都相等并且每個角都是60°;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE=AF,AB=AC,ECBF交于點(diǎn)O,A=60°,B=25°,求∠EOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國逐步完善養(yǎng)老金保險制度,甲、乙兩人計劃用相同的年數(shù)分別繳納養(yǎng)老保險金15萬元和10萬元,甲計劃比乙每年多繳納養(yǎng)老保險金0.2萬元.求甲、乙兩人計劃每年分別繳納養(yǎng)老保險金多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長城科技公司生產(chǎn)銷售一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷售成本三部分,經(jīng)核算,2014年該產(chǎn)品各部分成本所占比例約為2:a:1.且2014年該產(chǎn)品的技術(shù)成本、制造成本分別為400萬元、1400萬元.
(1)確定a的值,并求2014年產(chǎn)品總成本為多少萬元;
(2)為降低總成本,該公司2015年及2016年增加了技術(shù)成本投入,確保這兩年技術(shù)成本都比前一年增加一個相同的百分?jǐn)?shù)m(m<50%),制造成本在這兩年里都比前一年減少一個相同的百分?jǐn)?shù)2m;同時為了擴(kuò)大銷售量,2016年的銷售成本將在2014年的基礎(chǔ)上提高10%,經(jīng)過以上變革,預(yù)計2016年該產(chǎn)品總成本達(dá)到2014年該產(chǎn)品總成本的 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2+2x﹣9999=0
(2)2x2﹣2x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),要判定四邊形DBFE是菱形,下列所添加條件不正確的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2,BC=4,P為矩形邊上的一個動點(diǎn),運(yùn)動路線是A→B→C→D→A,設(shè)P點(diǎn)經(jīng)過的路程為x,以A,P,B為頂點(diǎn)的三角形面積為y,則選項圖象能大致反映yx的函數(shù)關(guān)系的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù),它的圖象與軸交于點(diǎn),與軸交于點(diǎn)

點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________;

畫出此函數(shù)圖象;

畫出該函數(shù)圖象向下平移個單位長度后得到的圖象;

寫出一次函數(shù)圖象向下平移個單位長度后所得圖象對應(yīng)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個點(diǎn)的距離的最小值稱為該點(diǎn)到這個圖形的最小距離d,點(diǎn)A到圖形G上各個點(diǎn)的距離的最大值稱為該點(diǎn)到這個圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度: A(1,0)的距離跨度;
B(﹣ , )的距離跨度;
C(﹣3,﹣2)的距離跨度
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以D(﹣1,0)為圓心,2為半徑的圓,直線y=k(x﹣1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OP:y= x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運(yùn)動,若射線OP上存在點(diǎn)到⊙E的距離跨度為2,直接寫出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

同步練習(xí)冊答案