【題目】如圖(1),已知拋物線與x軸交于A、B兩點(diǎn),與y軸負(fù)方向交于C點(diǎn),且.
(1)試求出拋物線的解析式;
(2)E為直線上.動(dòng)點(diǎn),F為拋物線對(duì)稱(chēng)軸上一點(diǎn),當(dāng)F點(diǎn)在對(duì)稱(chēng)軸上何處時(shí),四邊形ACFE的周長(zhǎng)最短,并求出此時(shí)四邊形的周長(zhǎng);
(3)如圖(2),為x軸上一點(diǎn),拋物線上x軸的上方是否存在點(diǎn)P,使得線段AP與直線CD相交且它們的夾角為45°,若存在這樣的P點(diǎn),請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)四邊形ACFE的最短周長(zhǎng),;(3)存在這樣的P點(diǎn),且
【解析】
(1)令y=0,可求得A(-1.0),B(3,0),根據(jù)條件求出點(diǎn)C的坐標(biāo),把點(diǎn)C的坐標(biāo)代入拋物線的解析式求出a即可;
(2)設(shè)點(diǎn)A關(guān)于直線y=1的對(duì)稱(chēng)點(diǎn),點(diǎn)C關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn),連接與直線y=1交于點(diǎn)E,與對(duì)稱(chēng)軸交于點(diǎn)F,此時(shí)四邊形ACEF的周長(zhǎng)最短,求出直線與對(duì)稱(chēng)軸的交點(diǎn)即可;
(3)設(shè)AP交CD于M,連BC.可證,得出,過(guò)M作軸于E,則可證,得到,,得到AM的解析式,聯(lián)立方程組即可求解.
解:(1),
∴,.
∵,,
∴.∴,∴
(2)設(shè)A關(guān)于的對(duì)稱(chēng)點(diǎn)為,則,設(shè)C關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為則.
設(shè)直線的解析式為,
則有,解得
∴,當(dāng)時(shí),,∴.
四邊形ACFE的最短周長(zhǎng),
,.
∴四邊形ACFE的最短周長(zhǎng),此時(shí).
(3)設(shè)AP交CD于M,連BC.
可證:,
∴,即.
∴.
過(guò)M作軸于E,則可證,
∴,即.
∴,,
∴AM的解析式為:.
由解得舍去
∴存在這樣的P點(diǎn),且
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).
(1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點(diǎn)D,當(dāng)S△CPD:S△BPD=1:2時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)G為x軸負(fù)半軸上的一點(diǎn),∠OGE=15°,連接PE,若∠PEG=2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);
(4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形紙片的邊長(zhǎng)為5,E是邊的中點(diǎn),連接.沿折疊該紙片,使點(diǎn)B落在F點(diǎn).則的長(zhǎng)為______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上,向右,向下,向右的方向不斷地移動(dòng),每移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么點(diǎn)A2020的坐標(biāo)為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)的《洛書(shū)》中記載著世界上最古老幻方:將1-9這九個(gè)數(shù)字填入3×3的方格內(nèi),使三行、三列、兩對(duì)角線上的三個(gè)數(shù)之和都相等.如圖的幻方中字母m所能表示的所有數(shù)中最大的數(shù)是( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階,下圖是其中的甲、乙兩段臺(tái)階的示意圖,圖中的數(shù)字表示每一級(jí)臺(tái)階的高度(單位:cm).請(qǐng)你用所學(xué)過(guò)的有關(guān)統(tǒng)計(jì)知識(shí),回答下列問(wèn)題(數(shù)據(jù):15,16,16,14,14,15的方差,數(shù)據(jù):11,15,18,17,10,19的方差:
(1)分別求甲、乙兩段臺(tái)階的高度平均數(shù);
(2)哪段臺(tái)階走起來(lái)更舒服?與哪個(gè)數(shù)據(jù)(平均數(shù)、中位數(shù)、方差和極差)有關(guān)?
(3)為方便游客行走,需要陳欣整修上山的小路,對(duì)于這兩段臺(tái)階路.在總高度及臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對(duì)角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過(guò)矩形對(duì)角線的交點(diǎn)E,若點(diǎn)A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC的周長(zhǎng)為7,∠AOC=60°,以O為原點(diǎn),OC所在直線為x軸建立直角坐標(biāo)系,函數(shù)(x>0)的圖像經(jīng)過(guò)OABC的頂點(diǎn)A和BC的中點(diǎn)M,則k的值為( )
A.B.12C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐的高為,母線為,且,圓錐的側(cè)面展開(kāi)圖為如圖所示的扇形.將扇形沿折疊,使點(diǎn)恰好落在上的點(diǎn),則弧長(zhǎng)與圓錐的底面周長(zhǎng)的比值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com