【題目】材料一:我們可以將任意三位數(shù)記為,(其中、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字,且.顯然.

材料二:若一個三位數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字均不為,則稱之為生數(shù),比如就是一個生數(shù),將生數(shù)的三個數(shù)位上的數(shù)字交換順序,可產(chǎn)生出個新的生數(shù),比如由可以產(chǎn)生出、、個新生數(shù),將這個數(shù)相加,得到的和稱為由生數(shù)生成的完全數(shù)

問題:(1)求證:任意一個完全數(shù)都可以整除;

2)若一個四位正整數(shù),是整數(shù))是由一個生數(shù), 、是整數(shù))產(chǎn)生的完全數(shù),請求出這個生數(shù).

【答案】1)證明見解析;(2124,223,322,421.

【解析】

1)先用字母寫出一個“生數(shù)”,再由此數(shù)寫出5個新的“生數(shù)”,然后求和,合并同類項即可;

2)求出生數(shù)產(chǎn)生的6個新的“生數(shù)”的和=,列式,利用整除的性質(zhì),求得以及的值,即可求解.

1)設(shè)這個“生數(shù)”為,即為:,

5個新的“生數(shù)”為:;;;

生成的“完全數(shù)”為:

,

∴任意一個完全數(shù)都可以整除;

2)∵“生數(shù)”為

∴生成的“完全數(shù)”為:,

四位正整數(shù),

根據(jù)題意:

即:,

,是整數(shù),,, 是整數(shù),

∴只有時,,

,;,;,;,;共4組.

這個生數(shù)是:124223,322,421.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOBO,B=30°,點By=的圖象上,求過點A的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,池塘邊有一塊長為18米,寬為10米的長方形土地,現(xiàn)在將其余三面留出寬都是x米的小路,中間余下的長方形部分做菜地,用代數(shù)式表示:

(1)菜地的長a=___米,寬b=___米;

(2)菜地的面積S=___平方米;

(3)求當(dāng)x=1米時,菜地的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,BDC是等腰三角形,且BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則AMN的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:

成績(分)

60

70

80

90

100

人數(shù)(人)

1

5

x

y

2

(1)如果這20名女生體育成績的平均分?jǐn)?shù)是82分,求x、y的值;

(2)(1)的條件下,設(shè)20名學(xué)生測試成績的眾數(shù)是a,中位數(shù)是b,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,2),B(0,6),動點C在直線yx上.若以A、BC三點為頂點的三角形是等腰三角形,則點C的個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 2.將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△使點落在AC邊上.設(shè)M的中點,連接BM,CM,則△BCM的面積為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,|x|表示x在數(shù)軸上對應(yīng)的點到原點的距離,我們可以把看作|x-0|,所以,|x- 3|就表示x在數(shù)軸上對應(yīng)的點到3的距離,|x1||x--1|就表示x在數(shù)軸上對應(yīng)的點到-1的距離,由上面絕對值的幾意義,解答下列問題:

(1) 當(dāng)|x-4||x2|有最小值時,x的取值情況是

(2) |x-3||x2 ||x6|的最小值是 ;

(3) 已知| x -1||x2 ||y-3||y4|10 2xy 的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,拋物線軸交于點A(-3,0),C(1,0),與軸交于點B.

(1)求此拋物線的解析式;

(2)點P是直線AB上方的拋物線上一動點(不與點A,B重合),過點P作軸的垂線,垂足交點為F,交直線AB于點E,作于點D.

①點P在什么位置時,△PDE的周長最大,求出此時P點的坐標(biāo);

②連接PA,以PA為邊作正方形APMN,當(dāng)頂點M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案