如圖,⊙O1,⊙O2的圓心在直線(xiàn)l上,⊙O1的半徑為2cm,⊙O2的半徑為3cm.O1O2=8cm,⊙O1以1m/s的速度沿直線(xiàn)l向右運(yùn)動(dòng),7s后停止運(yùn)動(dòng).在此過(guò)程中,⊙O1和⊙O2沒(méi)有出現(xiàn)的位置關(guān)系是( )
A.外切
B.相交
C.內(nèi)切
D.內(nèi)含
【答案】分析:根據(jù)兩圓的半徑和移動(dòng)的速度確定兩圓的圓心距的最小值,從而確定兩圓可能出現(xiàn)的位置關(guān)系,找到答案.
解答:解:∵O1O2=8cm,⊙O1以1m/s的速度沿直線(xiàn)l向右運(yùn)動(dòng),7s后停止運(yùn)動(dòng),
∴7s后兩圓的圓心距為:1cm,
此時(shí)兩圓的半徑的差為:3-2=1cm,
∴此時(shí)內(nèi)切,
∴移動(dòng)過(guò)程中沒(méi)有內(nèi)含這種位置關(guān)系,
故選D.
點(diǎn)評(píng):本題考查了圓與圓的位置關(guān)系,解題的關(guān)鍵是根據(jù)圓的移動(dòng)速度確定兩圓的圓心距,然后根據(jù)圓心距和兩圓的半徑確定答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2外切于點(diǎn)P,外公切線(xiàn)AB切⊙O1于點(diǎn)A,切⊙O2于點(diǎn)B,
(1)求證:AP⊥BP;
(2)若⊙O1與⊙O2的半徑分別為r和R,求證:
AP2
BP2
=
r
R
;
(3)延長(zhǎng)AP交⊙O2于C,連接BC,若r:R=2:3,求tan∠C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O1、⊙O2相交于點(diǎn)A、B,現(xiàn)給出4個(gè)命題:
(1)若AC是⊙O2的切線(xiàn)且交⊙O1于點(diǎn)C,AD是⊙O1的切線(xiàn)且交⊙O2于點(diǎn)D,則AB2=BC•BD;
(2)連接AB、O1O2,若O1A=15cm,O2A=20cm,AB=24cm,則O1O2=25cm;
(3)若CA是⊙O1的直徑,DA是⊙O2的一條非直徑的弦,且點(diǎn)D、B不重合,則C、B、D三點(diǎn)不在同一條直線(xiàn)上;
(4)若過(guò)點(diǎn)A作⊙O1的切線(xiàn)交⊙O2于點(diǎn)D,直線(xiàn)DB交⊙O1于點(diǎn)C,直線(xiàn)CA交⊙O2于點(diǎn)E,連接DE,則DE2=DB•DC.
則正確命題的序號(hào)是
 
.(在橫線(xiàn)上填上所有正確命題的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O1,⊙O2,⊙O3,⊙O4,⊙O的半徑均為2cm,⊙O與⊙O1,⊙O3相外切,⊙O與⊙O2,⊙O4相外切,并且圓心分別位于兩條互相垂直的直線(xiàn)L1,L2上,連接O1,O2,O3,O4得四邊形O1O2O3O4,則圖中陰影部分的面積為
 
cm2.(π≈3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1和⊙O2相交于A(yíng)、B兩點(diǎn),經(jīng)過(guò)A的直線(xiàn)CD與⊙O1交于點(diǎn)C、與⊙O2交于點(diǎn)D,經(jīng)過(guò)點(diǎn)B的直線(xiàn)EF與⊙O1交于點(diǎn)E、與⊙O2交于點(diǎn)F,連接CE、DF.若∠AO1E=100°,則∠D的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,⊙O2的弦AB經(jīng)過(guò)⊙O1的圓心O1,交⊙O1于點(diǎn)C、D,若AC:CD:BD=3:4:2,則⊙O1與⊙O2的直徑之比為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案