【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對(duì)應(yīng)點(diǎn)D′之間的距離為 ______

【答案】2

【解析】如圖,過C作GH⊥x軸,交x軸于G,過D作DH⊥GH于H,由正方形的性質(zhì)和A、B點(diǎn)的坐標(biāo)證得△AOB≌△BGC,然后根據(jù)全等三角形的性質(zhì)求得C點(diǎn)(3,1),利用點(diǎn)C的坐標(biāo)代入函數(shù)的解析式yx2bx1,求得b=-,同理得到AOB≌△BGC,得出D的坐標(biāo)(2,3),根據(jù)平移的性質(zhì):D、D′縱坐標(biāo)相同,則y=3,代入函數(shù)的解析式x2-x1=3,解得x=4或x=-3(舍去),求出D′點(diǎn)的坐標(biāo)為(4,3),即可得D與D′的距離為2.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、之間的函數(shù)關(guān)系如圖所示.

1)甲采摘園的門票是_____,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____;

2)當(dāng)時(shí),求的函數(shù)表達(dá)式;

3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張如圖1的長(zhǎng)為a,寬為bab)的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分(兩個(gè)長(zhǎng)方形)用陰影表示.當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,左上角與右下角的陰影部分的面積的差S始終保持不變,則a,b滿足的關(guān)系是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)貿(mào)市場(chǎng)擬建兩間長(zhǎng)方形儲(chǔ)藏室,儲(chǔ)藏室的一面靠墻(墻長(zhǎng)30m),中間用一面墻隔開,如圖所示,已知建筑材料可建墻的長(zhǎng)度為42m,則這兩間長(zhǎng)方形儲(chǔ)藏室的總占地面積的最大值為_______m2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對(duì)于下列命題:①b-2a=0abc0;a-2b+4c0;8a+c0.其中正確的有____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)準(zhǔn)備購買一批筆記本獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,在購買時(shí)發(fā)現(xiàn),每本筆記本可以打九折,用360元錢購買的筆記本,打折后購買的數(shù)量比打折前多10本.

1)求打折前每本筆記本的售價(jià)是多少元?

2)由于考慮學(xué)生的需求不同,學(xué)校決定購買筆記本和筆袋共90件,筆袋每個(gè)原售價(jià)為6元,兩種物品都打九折,若購買總金額不低于360元,且不超過365元,問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,已知ABC為等邊三角形,動(dòng)點(diǎn)D在邊AC上,動(dòng)點(diǎn)P在邊BC上,若這兩點(diǎn)分別從CB點(diǎn)同時(shí)出發(fā),以相同的速度由CA和由BC運(yùn)動(dòng),連結(jié)AP、BD交于Q,兩點(diǎn)運(yùn)動(dòng)的過程中,APBD成立嗎?請(qǐng)證明你的結(jié)論.

2)如果把原題中的動(dòng)點(diǎn)D在邊AC上,動(dòng)點(diǎn)P在邊BC上,改為:動(dòng)點(diǎn)D在射線CA上、動(dòng)點(diǎn)P在射線BC上運(yùn)動(dòng),其他條件不變,如圖2所示,APBD還成立嗎?說明理由,并求出∠BQP的大。

3)如果把原題中的動(dòng)點(diǎn)P在邊BC,改為動(dòng)點(diǎn)P在射線AB上運(yùn)動(dòng),連結(jié)DPBCE,其他條件不變,如圖3,則動(dòng)點(diǎn)D、P在運(yùn)動(dòng)過程中,請(qǐng)你寫出DEPE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)手操作:如圖,在RtABC中,∠ACB=90°,AC=8,BC=4,點(diǎn)D為邊AC上一動(dòng)點(diǎn),DEABAB于點(diǎn)E,將∠A沿直線DE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F.當(dāng)△DFC是直角三角形時(shí),AD的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案