【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,CDl2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

【答案】C、D兩點間的距離為30m

【解析】

直接利用等腰三角形的判定與性質(zhì)得出DE=AE=20,進而求出EF的長,再得出四邊形ACDF為矩形,則CD=AF=AE+EF求出答案.

過點Dl1的垂線,垂足為F,

∵∠DEB=60°,∠DAB=30°,

∴∠ADE=DEB-DAB=30°,

∴△ADE為等腰三角形,

DE=AE=20,

RtDEF中,EF=DEcos60°=20×=10,

DFAF,

∴∠DFB=90°,

ACDF,

由已知l1l2

CDAF,

∴四邊形ACDF為矩形,CD=AF=AE+EF=30

答:C、D兩點間的距離為30m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實黨的精準扶貧政策,A、B兩城決定向C,D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知AB兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20/噸和25/噸:從B城往CD兩鄉(xiāng)運肥料的費用分別為15/噸和24/噸,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

1A城和B城各有多少噸肥料?

2)設(shè)從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求yx的函數(shù)關(guān)系式.

3)怎樣調(diào)運才能使總運費最少?并求最少運費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點B、D、F在同一直線上).

(1)求小敏到旗桿的距離DF.(結(jié)果保留根號)

(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線lx軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則點A2 018的橫坐標是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于AD的長為半徑作弧,兩弧交于點MN;第二步,過M、N兩點作直線分別交AB、AC于點E、F;第三步,連接DE、DF.若BD=8,AF=6,CD=4,則BE的長是( 。

A. 12B. 11C. 13D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年3月25日是第二十四個“全國中小學(xué)生安全教育日”,某校為加強學(xué)生的安全意識,以“防火、防溺水、防食物中毒、防校園欺凌”為主題組織了全校學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分為正整數(shù),滿分為100分)進行統(tǒng)計,繪制了兩幅不完整的統(tǒng)計圖,如圖所示.

(1)學(xué)校共抽取了______名學(xué)生,_____,n=______.

(2)補全頻數(shù)直方圖;

(3)該校共有2000名學(xué)生。若成績在70分以下(含70分)的學(xué)生安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知,,,點在直線上,把沿著直線翻折,點落在點處,聯(lián)結(jié),如果直線與直線所構(gòu)成的夾角為60°,那么點的坐標是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC,BD為對角線,BC=3,BC邊上的高為2,則陰影部分的面積為(

A. 3B. 4C. 6D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,折疊紙片使點落在邊上的處,折痕為.過點,連接.

1)求證:四邊形為菱形;

2)當點邊上移動時,折痕的端點,也隨之移動.

①當點與點重合時(如圖),求菱形的邊長;

②若限定分別在邊,上移動,求出點在邊上移動的最大距離.

查看答案和解析>>

同步練習(xí)冊答案